SCS-010-005

Comparing the Performance of Wearing Helmet Behavior Model While Driving Motorcycle by Binary Logistic Regression Analysis Method and Learning Vector Quantization of Artificial Neural Network

::AUTHORS::

Ms.Phattarasuda Witchayaphong

Ms.Napat Lekhawattana

Ms. Kedsadaporn Chaiwong

M5242122

M5242214

M5242238

INSTITUTE OF TRANSPORTATION ENGINEERING

Presentation Outline

1.

• Problem Statements

2.

Research Objectives

3.

Research Methodology

4.

Conclusion

Š.

Advantages and limitations

Problem Statements

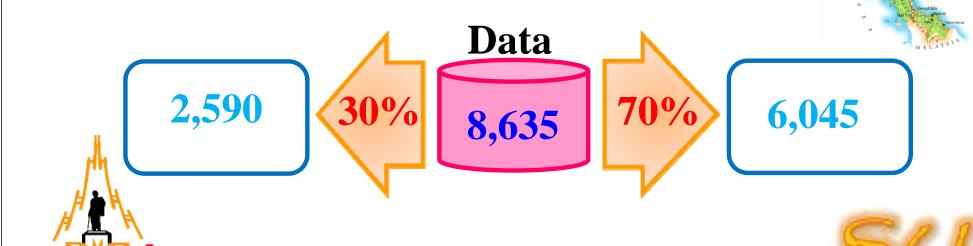
Research Objectives

- ➤ Develop Wearing Helmet Behavior Model
- > Develop forecasting models
- > Comparing the Performance of Model

Binary Regression **Analysis**

Artificial Neuron Network

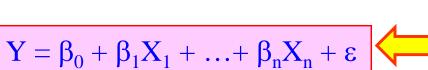
MATLAB


Research Methodology

> Data − Questionnaire

"Awareness campaigns on traffic accidents, knowledge, attitude and acceptance of traffic law enforcement"

- ▶8,635 Data from Random Sampling 26 Provinces
- Scope Area in Thailand

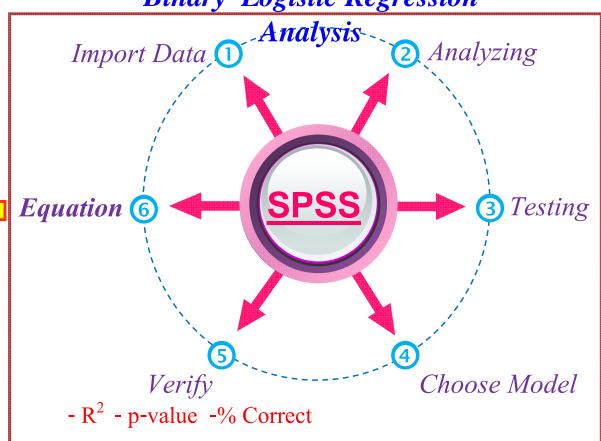

Binary Logistic Regression Analysis

▶ 2,590 Questionnaire Data

Analysis

- **>**Check correction
- ▶ Prepare Data to SPSS Analysis
- > SPSS Program

Y = Motorcyclist helmet-wearing behavior


0 Sometimes

1 Always

SPSS

Binary Logistic Regression

Result of Binary Logistic Regression Analysis

$$Y = -1.036 - 1.080x_1 + 1.964x_2 - 0.404x_3 + 0.245x_4 + 0.431x_5$$

= Motorcyclist helmet-wearing behavior(sometimes/always)

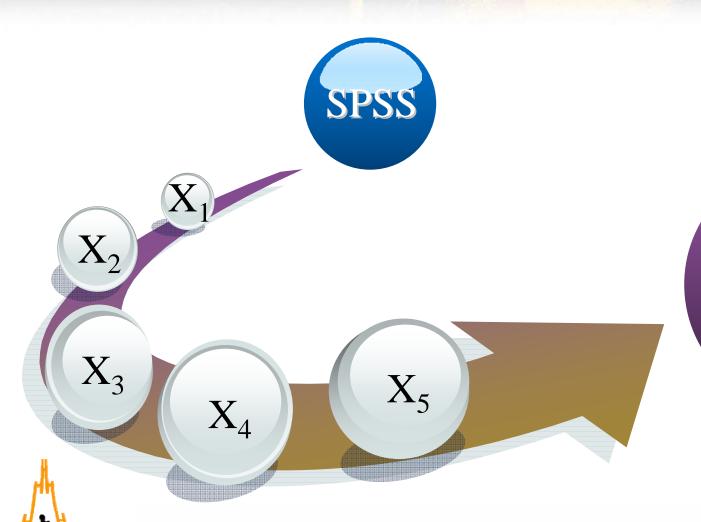
 X_1 = Awareness of traffic accident campaigns

 X_2 = Acceptance of traffic laws

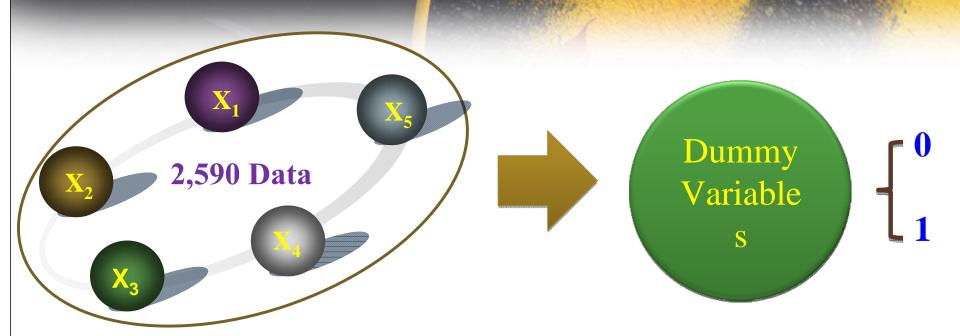
 $X_3 = Sex$

 $X_4 = Age$

 X_5 = Level of knowledge of traffic laws.


R Square= 0.254, Percentage Correct = 71.35%

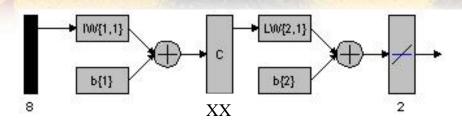
Artificial Neural Network

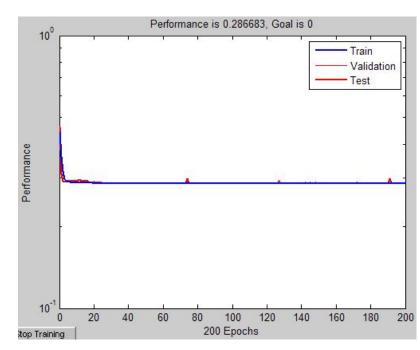


Learning Vector Quantization

Learning Vector Quantization (LVQ)

- = Motorcyclist helmet-wearing behavior(sometimes/always)
- = Awareness of traffic accident campaigns
- = Acceptance of traffic laws
- = Sex
- = Age
- = Level of knowledge of traffic laws.


Result of Learning Vector Quantization



Percentage Correct = 71.24%

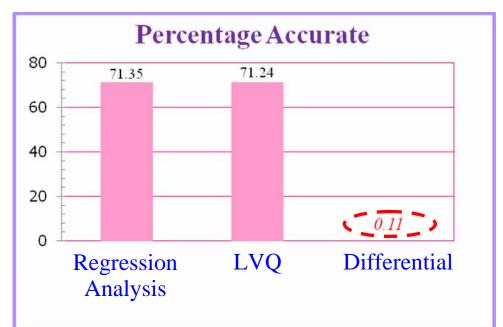
Network	Enocha	Training	Testing	%
Architecture	Epochs	(MSE)	(MSE)	Correct
8-10-2	20	0.2873	0.2919	70.81%
8-10-2	50	0.2868	0.2876	71.24%
8-10-2	70	0.2873	0.2876	71.24%
8-10-2	100	0.2868	0.2876	71.24%
8-10-2	200	0.2868	0.2876	71.24%
8-20-2	20	0.2870	0.2876	71.24%
8-20-2	50	0.2863	0.2876	71.24%
8-20-2	70	0.2868	0.2876	71.24%
8-20-2	100	0.2868	0.2876	71.24%
8-20-2	200	0.2868	0.2876	71.24%

Results of Accuracy Estimation on Factors Influencing Model Using Artificial Neural Network Method

Graph showing Result of Effectiveness Test from LVQ Artificial Neural Network

Conclusion

Percentage Accuracy



71.24%

Binary Logistic Regression Analysis

LVQ

Advantages & Limitations

- Generated a utility function
- The results were merely prediction on each individual(Probability)

- Not explain significance
- Clearly classified each individual's decision
- Learn and remember

Binary Logistic Regression

LVQ

