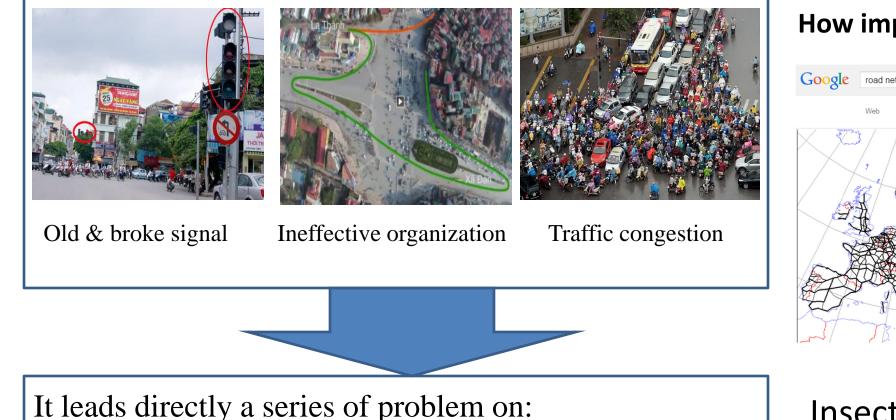
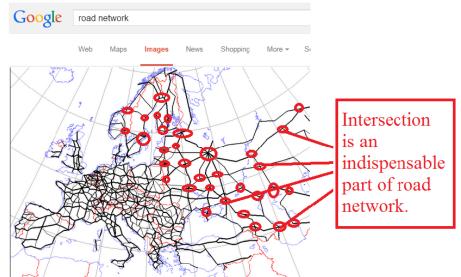
An Analysis of Signalized Intersection and Solution for Applying Real-Time Traffic Control Technologies: A Case Study for Mixed Traffic Condition in Hanoi City

Mr. Hoang Trung Thong

Institute of Planning and Transportation Engineering National University of Civil Engineering, Vietnam


21 August, 2015

Main contents


- Overview
- Current situation of intersection in Hanoi City
- Problems and solutions
- A case study in Hanoi City
- Conclusions

Overview

How important Intersection issue is?

It leads directly a series of problem on:

- traffic quality
- Environmental pollution
- **Reducing quality of life**

Insection issue : one of the most important problems in Hanoi City recent years.

Current situation of intersection in Hanoi

Number of congestion points

Year	2011	2012	2013	2014*
Number	124	67	57	46

Source: Hanoi DOT, 2013; *) No.281/TB-VP, Hanoi People's Committee, 2014.

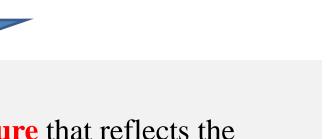
=> The number of congestion points is reducing, but it is still quite high.

Number of Intersections in Hanoi

To the end of 2013 (HDOT), Hanoi has 2,150 intersections, in which:

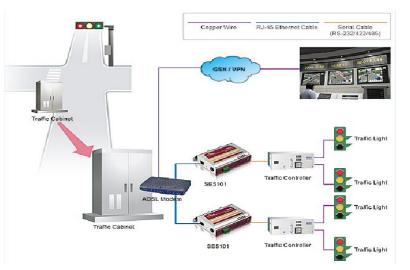
- only 6 interchanges;
- around 214 signalized intersections;
- 33 intersections were installed monitoring camera with 52 cameras of VOV broadcast.

Quality of intersection infrastructure


- A large number of signalized intersections was old and broken.
- Almost intersections are operating separately, they are not connected together so they can not resolve problems of intersection generally.

Problems and solutions

Intersection problems :


- The signal time cycle does not reflect axactly the current situation of traffic flow;
- The congestion situation is serious, especially at peak hours;
- The service level of intersection is quite low.

Proposed solution:

Using **a real-time traffic cycle measure** that reflects the traffic flow situation and does not require a large budget or changing infrastructure.

A case study: Pham Hung-Me Tri intersection

Pham Hung-Me Tri is a typical signalized intersection. It is located at west of Hanoi City and it has some following advantages:

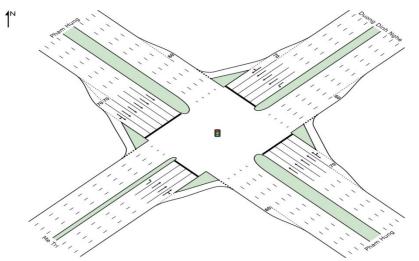
- larger area, fully channels (4 right lanes are always free), and a pedestrian tunnel;
- A good traffic organisation => no intersection in the conflict area;
- Traffic infrastructure is still good (built in 2011)

• What is the **most effective solution**?

Surveys content

No.	Type of survey	Contents
1	Dimensional survey	Features of dimension
2	Traffic signal timing cycle	Time of phases and cycle
3	Traffic volume counting	Traffic volume in directions
4	Queue length survey	Queue length in directions

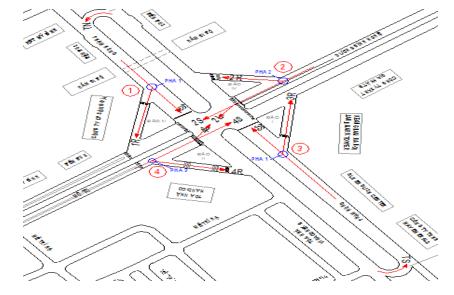
1.



2.

Survey result (1)

No.	Elements	Pham Hung – Me Tri Intersection
1	Type of intersection	 Signalized-intersection Fully channelized intersection (4 channelizing triangular islands & divisional island in each approach)
2	Intersection axes	2 urban arterial road axes:Pham Hung street axis;Me Tri-Duong Dinh Nghe street axis.
3	Traffic organization	 3 phases-traffic signal; right-turns are always free; Vehicle turns left directly in conflict area (Me Tri- DD.Nghe axis) & turns left by U-turning at northbound and southbound of Pham Hung (Pham Hung axis).



Survey result (2)

Queue length was measured every 5-minutes in peak hours => The queue length is quite long. In overall, **there were 47** and 35 vehicles at AM peak and PM peak.

step light	1	2	3	4	5	6	7	8	9	10	
1 A											
2										} }	
3										((le
traffic flow chart	1A ¥ /	1		A R	J VL	2 7	A R		NT-	A R) cycle
morning	4	6	3	2	26	3	2	34	3	2	121
noon	4	0	3	2	25	3	2	25	3	2	105
evening	4	6	3	2	34	3	2	26	3	2	121

Pham Hung-Me Tri intersection is using 3 phase-signal. Signal time cycle is changing over time, but **it does not reflect exactly the situation of flow traffic.**

Summary Survey result

AM peak

Dir.	Deg. Satn V/C	Ave. Delay (s)	LOS	Queue length	Aver. Speed (km/h)				
Pham Hung (side of DD.Nghe)									
3	0.778	27.5	С	34.5	41.4				
Duong Dinh Nghe									
2	0.917	58.3	E	31.1	30.8				
	Pha	m Hung (s	ide of Me	Tri)					
1	0.604	28.8	С	17.6	40.9				
Me Tri									
4	0.947	52.3	D	46.6	32.5				
Ove.	0.947	39.7	D	46.6	36.5				

PM peak

Dir.	Deg. Satn V/C	Ave. Delay (s)	LOS	Queue length (m)	Aver. Speed (km/h)					
Pham Hung (side of DD.Nghe)										
3	0.759	25.8	С	19.6	42.2					
Duong Dinh Nghe										
2	0.909	54.5	D	35.1	31.9					
	Pha	n Hung (s	ide of M	le Tri)						
1	0.657	28.3	С	18.2	41.1					
Me Tri										
4	0.849	49.0	D	19.4	33.5					
Ove.	Ove. 0.909		D	35.1	36.8					

4.

Problems

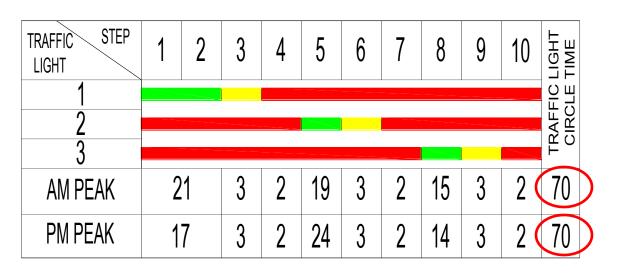
Problems:

- The average speed & LOS are very low;
- The queue legth and delay time is very high;
- The congestion situation is serious, especially at peak hours.

 \Rightarrow the main reason:

Signal time cycle is not inadequate anymore, it does not reflect exactly the curent traffic situation.

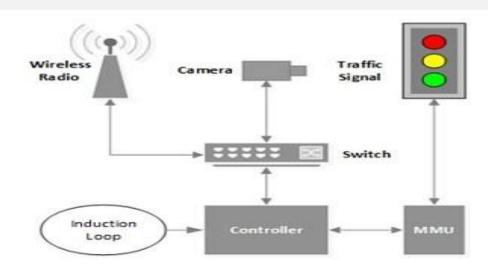
Application a new real-time signal cycle is an effective solution, which is much appreciated in aspects of economy, technology and apropos time.


5.

Solution

Proposed new signal time cycle

Optimum cycle time:

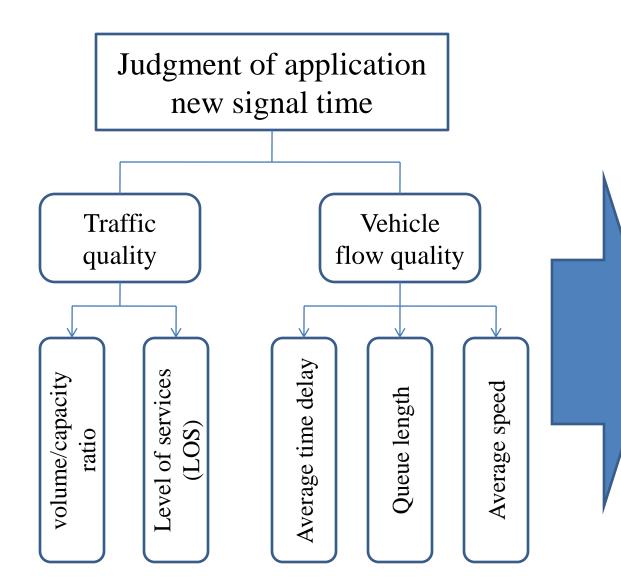

- Optimum cycle time was calculated by SIDRA INTERSECTION software.
- The optimum cycle time at both AM and PM peak is 70 seconds.

Proposed new signal control technology

Sensor control technology system consists of 4 parts:

- sensors cameras that detect cars;
- controllers that use the sensor data to control the lights;
- radios for wireless communication among intersections;
- malfunction management units (MMUs)

Analysis


Analysis of typical elements after changing time cycle at AM

Dir.	Deg. Satn V/C	Ave. Delay (s)	LOS	Queue length	Aver. Speed (km/h)				
Pham Hung (side of DD.Nghe)									
3	0.846	23.4	С	23.0	43.4				
Duong Dinh Nghe									
2	0.934	29.7	С	14.0	40.4				
	Pha	m Hung (s	ide of Me	Tri)					
1	0.702	21.9	С	10.6	44.3				
Me Tri									
4	0.937	33.4	С	28.8	38.9				
Ove.	0.937	26.8	С	28.8	41.8				

Analysis of typical elements after changing time cycle at PM

Dir.	Deg. Satn V/C	Ave. Delay (s)	LOS	Queue length	Aver. Speed (km/h)				
Pham Hung (side of DD.Nghe)									
3	0.814	24.3	C 15.9		42.9				
Duong Dinh Nghe									
2	0.925	23.9	С	19.8	43.1				
	Pham	n Hung (s	ide of Me	e Tri)					
1	0.870	30.2	С	13.4	40.2				
	Me Tri								
4	0.899	34.8	С	12.8	38.4				
Ove.	0.925	27.4	С	19.8	41.5				

Performance Judgment

Before and after using optimum time cycle (AM & PM peak)

	A	M	PM		
Element	Before	after	Before	after	
LOS	D	С	D	С	
DOS (%)	95	94	91	93	
Avg. delay (s)	40	27	39	27	
Queue length	47	29	35	20	
Avg. speed (km/h)	37	42	37	42	
Impact on queue	- 3	8%	- 43%		

Conclusions

- Therefore, using optimum signal time will help to reduce queue situation as well as average delay timing.
- In addition, it also helps to increase the average vehicle speed and directly to improve the service level of intersection.
- Currently, Hanoi has not any plans to expanse intersections in the city as well as build an intersection network plan, thus applying new real-time traffic control technology solution as mentioned above will play an important role in improvement the traffic situation at intersection.
- It can be applied not only for Pham Hung Me Tri signalized intersection but also for other similar intersections in Vietnam.

Thank you for your kind attention !!!

Mr. Hoang Trung Thong

Institute of Planning and Transportation Engineering National University of Civil Engineering, Vietnam

