TRAFFIC SAFETY AT INTERSECTIONS BETWEEN ROAD AND RAILWAY IN VIET NAM

Tung Vu Thanh
Hang Tran Thi
Prof. Dang Tran Thi Kim

University of Transport and Communications, Viet Nam

Presenter: Tung Vu Thanh

Contents

- Introduction
- Research Methodology
- Results
- Conclusion and Recommendation
- References

Introduction

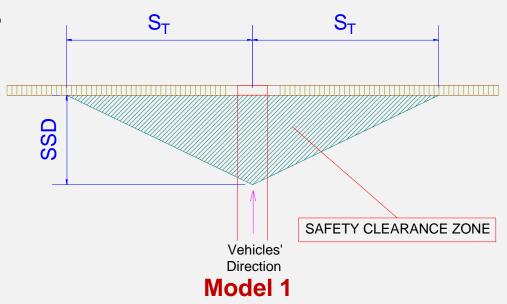
- Viet Nam Railway Rescue and Natural Calamity Response Centre:
 - 6317 rail-road crossings
 - 4846 minor crossways opening by local communities
 - 80% accidents occur at minor rail-road crossings
- Traditional method cannot provided with large number of crossways
- → Necessary to propose a method with wide range of applicable:

CROSSWAY SIGHT DISTANCE

1. Introduction 2. 3. 4. 5.

Research Methodology

Theoretical Principles

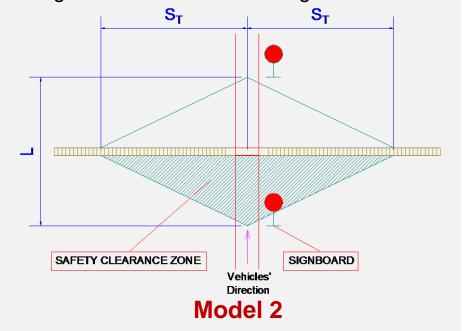

$$SSD = d_{BR} + d_{B}$$

SSD = Stopping Sight Distance

d_{BR} = braking reaction distance

 d_B = braking distance

Models



$$S_T = V_T \times T_T$$

 S_T = Travelled Distance of Train

 V_T = Velocity of train

 T_T = Sum of braking reaction time and braking time

Research Methodology

Necessary Parameters

Model 2

Brake reaction time = 2.5 s

Deceleration rate = $3.4 \text{ m}^2/\text{s}$

Velocity of train = 70 km/h

Initial Speed	Maneuver Time
km/h	S
5	1
10	1.4
20	1.8
30	2.2
40	2.6

Vehicle's Velocity = 15 km/h

L	Observing Time	Starting Time	Moving Time	Total Time
m	S	S	S	S
5	2	1	1.2	4.2
6	2	1	1.4	4.4
7	2	1	1.7	4.7

2. Research Methodology

4.

5.

5/17

Surveying Intersections Overview

1. 2. 3. Results 4. 5. 6/17

Surveying Intersections Overview

	Location of Intersection	Barrier	Signal Traffic	Sign/ Warning board	Guard	Manually- operated bar	Vision	Satisfy A _{CZ} (max/min)	Notes
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
1	Km 114 + 400	X	X		X				Major
	Km 114 + 620		(Old Ninh Binh Stati	on				
2	Km 114 + 720	X	Х		X				Major
3	Km 116 + 600			x	X	x		None	NO.01
4	Km 117 + 600			X	X	X	Good	Min	
5	Km 118 + 500	X	X		X				Major
6	Km 119 + 200			X			Good	Min	
7	Km 120 + 00			x			Limited	None	
8	Km 120 + 400			X			Good	Max	
9	Km 121 + 012			X			Limited	None	
10	Km 121 + 112			x			Good	Max	
11	Km 122 + 237			x			Limited	None	NO.02
12	Km 122 + 550			X			Limited	None	
13	Km 123 + 350				X	X	Limited	None	
14	Km 124 + 750			X			Limited	Min	
15	Km 125 + 150			X			Good	Max	
16	Km 125 + 450	Х	Х						
17	Km 126 + 150			X	X		Limited	None	NO.03

1. 2. 3. Results 4. 5. 7/17

Safety Clearance Zone (Model 1) – Calculation Results

V	d _{BR}	d _B	SSD	S _T	A _{CZ}
km/h	m	m	m	m	m ²
5	3.5	0.2	3.7	68.1	252.2
10	7.0	0.9	7.9	75.8	597.0
20	13.9	3.7	17.6	83.6	1470.9
30	20.9	8.3	29.2	91.4	2664.6
40	27.8	14.8	42.6	99.2	4221.2
50	34.8	23.1	57.8	106.9	6183.8

V	d _{BR}	d _B	SSD	S _T	A _{CZ}
km/h	m	m	m	m	m ²
5	3.5	0.2	3.7	68.1	252.6
10	7.0	0.9	7.9	75.8	598.7
20	13.9	3.8	17.7	83.6	1478.3
30	20.9	8.5	29.4	91.4	2682.8
40	27.8	15.1	42.9	99.2	4256.3
50	34.8	23.6	58.4	106.9	6243.1

V	/	d _{BR}	d _B	SSD	S _T	A _{CZ}
km	ı/h	m	m	m	m	m ²
5	,	3.5	0.2	3.7	68.1	251.5
10	0	7.0	0.9	7.8	75.8	593.9
2	0	13.9	3.5	17.4	83.6	1457.0
3	0	20.9	7.9	28.8	91.4	2630.6
4	0	27.8	14.1	41.9	99.2	4155.6
5	0	34.8	22.0	56.8	106.9	6073.3

Intersection No.01

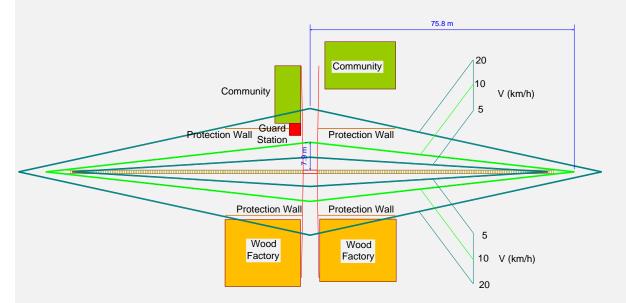
Intersection No.02

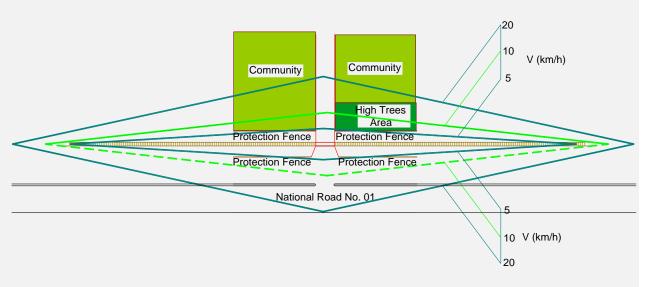
Intersection No.03

1. 2. 3. Results

.

5.

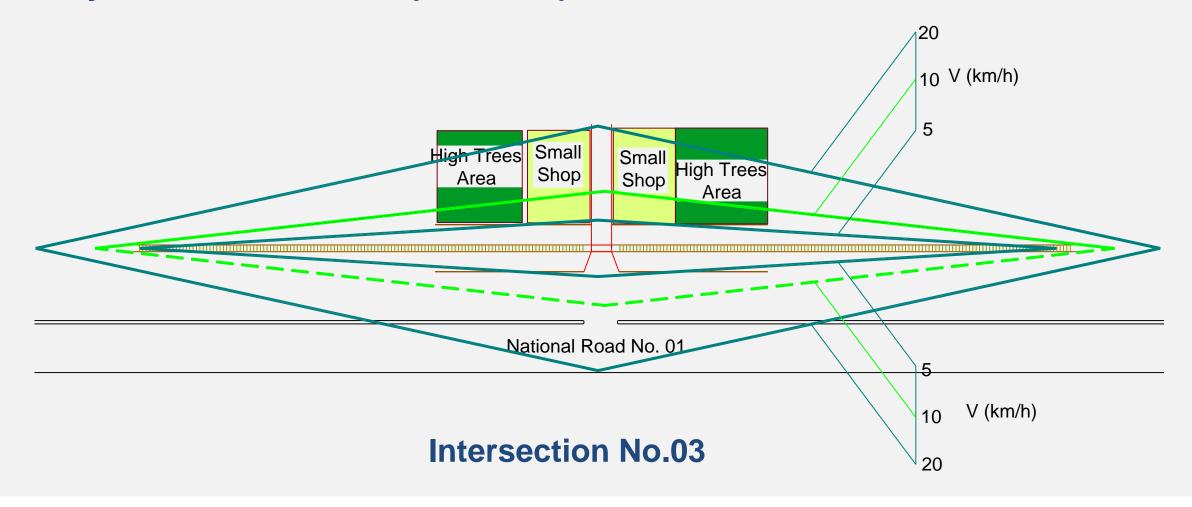

8/17


Safety Clearance Zone (Model 2) – Calculation Results

L ₁	L ₂	V	т	S _T	A _{CZ (min)}
m	m	km/h	S	m	m ²
5.0	2.0	15.0	4.2	81.7	163.3
6.0	2.5	15.0	4.4	85.6	213.9
7.0	3.0	15.0	4.7	91.4	274.2

1. 2. 3. Results 4. 5. 9/17

Safety Clearance Zone (Model 1)



Intersection No.01

Intersection No.02

1. 2. 3. Results 4. 5. 10/17

Safety Clearance Zone (Model 1)

1. 2. 3. Results 4. 5. 11/17

Follow-up Solutions

- It is better to provide follow-up solutions that go together with CSD method to achieve highest level of traffic safety
- Principle: warning vehicle at the intersection when train enter SCZ
 - People Warning (basing on train schedule)
 - > Signal Traffic (basing on sensors or detectors)
 - > Intelligent Traffic System (basing on physical characteristics of train)

1. 2. 3. Results 4. 5. 12/17

Cost – Effectiveness Study

Unit: 1,000 VND

Monthly Salary	Budget for Staff (VND)						
1 person	1 year 5 years		10 years	20 years			
3,000	216,000	1,080,000	2,160,000	4,320,000			

Unit: 1,000 VND

Items	Intersec	tion No.02	Intersection No.03	
	Area	Budget	Area	Budget
Unit	m²	VND	m²	VND
Residential Land	110	880,000		
Business Land			150	600,000
Total		880,000		600,000

Budget for Traditional Method

Budget for Cross Sight Distance Method

1. 2. 3. Results 4. 5. 13/17

Conclusion and Recommendation

For Model 1

- The higher velocity of vehicles requires much higher area for clearance
- It is suggested to determine SCZ with velocity of vehicle at 10 km/h
- Drivers are recommended to operate their vehicle at speed of 5 km/h
- → More benefits for safety condition due to combination of higher SCZ and lower velocity corresponding to this SCZ

For Model 2

• The distance $L_2 = 2.5$ m should be chosen to set up signboard

Conclusion and Recommendation

- It is better to set up SCZ follow model 1 (vehicle do not stop when crossing the rail)
- In case of difficulties, model 2 (vehicle must stop before crossing the rail) would became reasonable solution
- It is reachable method for both the authorities and local communities
- It is recommended to put follow-up solutions to achieve the highest safety conditions

References

- 1. Ministry of Transport, Viet Nam. Road-Rail Crossings Regulation. Ha Noi, 2012.
- **2.** P. Ferro and D. Wyars. Manual to Determining Required Sight Distance to Train at Level Crossings. Victoria: Public Transport Cooporation, Infrastructure Devision, 1996.
- **3.** American Association of State Highway and Transport. Policy on Geometric Design of Highways and Streets. Washington, DC: AASHTO, 2011.
- **4.** Daniel B, Fambro et al. NCHRP Report 400: Determination of Stopping Sight Distance. Washington, D.C: National Academy Press, 1997.
- 5. Viet Nam Railway Corporation. Velocity of Train Regulation. Ha Noi: VNRC, 2014.
- **6.** Gary Long. Acceleration Characteristics of Starting Vehicles. Washington, DC: Transportation Research Board, 2000.
- 7. Drew. Traffic Flow Theory and Control. s.l.: McGraw-Hill, 1968.
- **8.** People's Committee of Ninh Binh Province. Land Cost Regulation in Ninh Binh Province in period of 2015 to 2019. Ninh Binh: People's Committee of Ninh Binh Province, 2014.

1. 2. 3. 4. 5. References 16/17

Thank you for your listening!

Tung Vu Thanh

The End 17/17