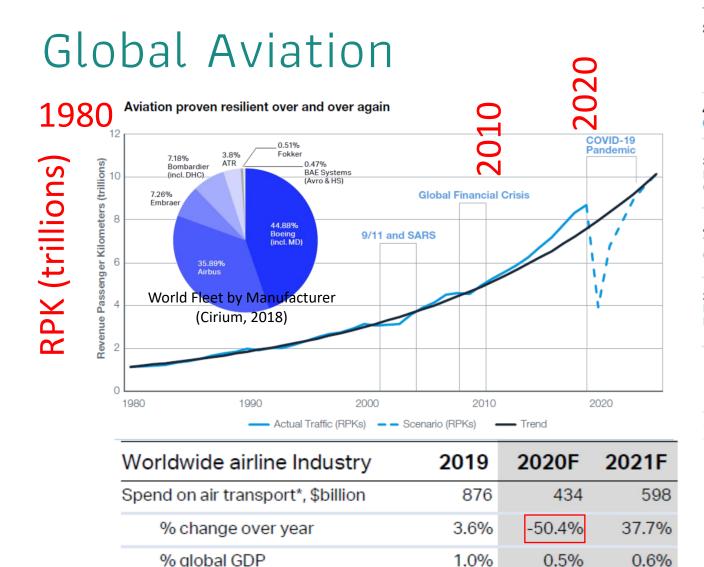

Assessment of GHG emission reduction potential in Thai aviation sector

ATRANS Research Project Interim Presentation 13:00 – 16:00 [Thailand time] ATRANS HQ | online 24 September 2021

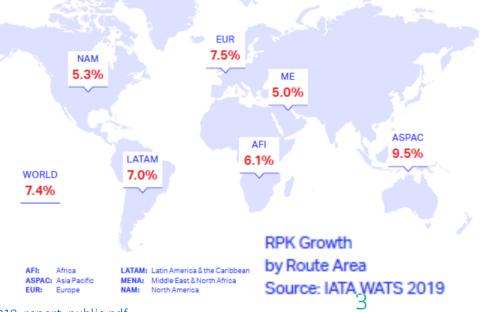
Nuwong Chollacoop

National Energy Technology Center (ENTEC), National Science and Technology Development Agency (NSTDA) <u>nuwong.cho@entec.or.th</u>

Contents


• Project Recap

- ✓ Rationale of the project
- ✓ Research objective & methodology
- ✓Project members | Timeline | Budget
- On-going Results
 - ✓ Reviews from international cases✓ Thailand effort



https://asianaviation.com/wp-content/uploads/Boeing-forecast.pdf

RPKs, billion

nber of NSTDA

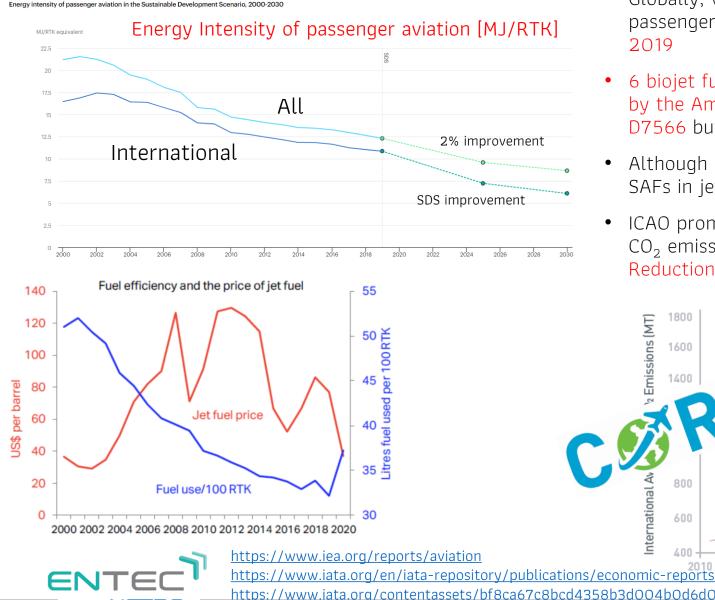
% change over year

https://www.iata.org/contentassets/bf8ca67c8bcd4358b3d004b0d6d0916f/mctg-fy2018-report-public.pdf

8680

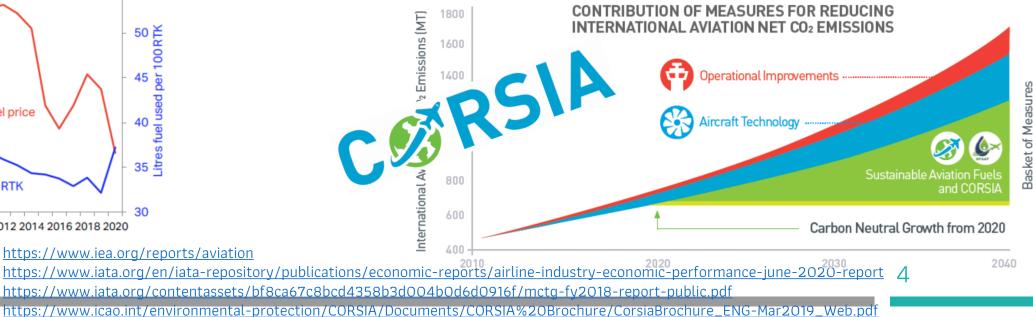
4.2%

https://www.iata.org/en/iata-repository/publications/economic-reports/airline-industry-economic-performance-june-2020-report


3929

-54.7%

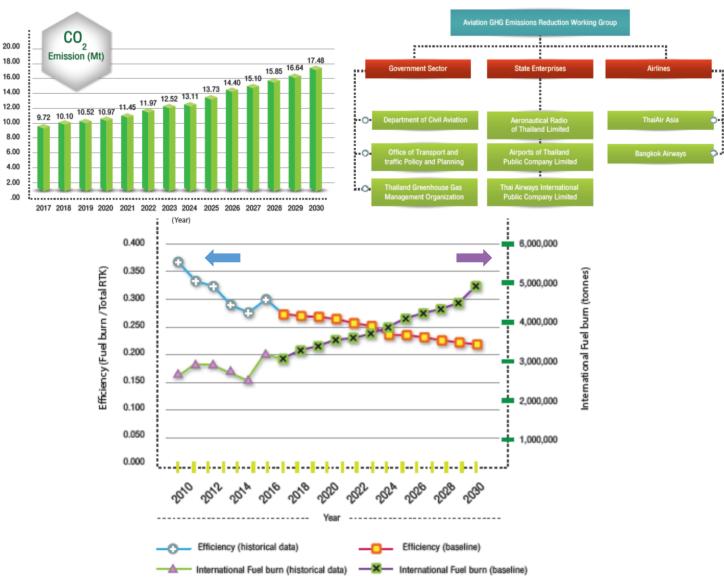
6099


55.2%

Energy & Environment Aspects of Aviation

of NSTD

- Globally, volume of aviation activity (domestic and international) for passenger flights increased more than 2.7-fold between 2000 and
- 6 biojet fuel production pathways (as of Feb 2020) had been approved by the American Society of Testing and Materials (ASTM) standard D7566 but only one - HEFA jet - is commercially available.
- Although > 200,000 flights using biojet fuel blends, current share of SAFs in jet kerosene for aviation overall is still very small (<0.1%)
- ICAO promotes various policy frameworks for aircraft efficiency and CO₂ emissions standards, as well as CORSIA [Carbon Offsetting and Reduction Scheme for International Aviation) in 2016.


Thailand's Action Plan to Reduce Aviation Emission 2018

AIRLINES COMMERCIAL AIRLINES			
AIRLINE	ICAO	IATA	CALL SIGN
1) Thai Airways International	THA	TG	THAI
2) Thai AirAsia	AIQ	FD	THAI ASIA
3) Nok Air	NOK	DD	NOK AIR
4) Thai Lion Mentari	TLM	SL	MENTARI
5) Orient Thai Airlines	OEA	OX	ORIENT THAI
6) Bangkok airways	BKP	PG	BANGKOK AIR
7) Thai Smile Airways	THD	WE	THAI SMILE
8) Thai AirAsia X	TAX	XJ	EXPRESS WING
9) NewGen Airways	VGO	E3	VIRGO
10) NokScoot	NCT	XW	BIG BIRD
11) Jet Asia Airways	JAA	JF	JET ASIA
12) Siam Air	RBR		SIAM AIR
13) Thai Vietjet Air	TVJ	VZ	THAIVIET JET
14) Asia Atlantic Airlines	AAQ	HB	ASIA ATLANTIC
15) Skyview Airways	RCT	RK	GREEN SKY
16) Sabaidee Airways		VZ	

	Fuel Burn (FB)		RTK FB/R		RTK	CO ₂ Emission	
	Year	(LITRE)	Tonnes	thousand (Tonnes×km)	LITRE/RTK	kg/RTK	Tonnes
		[A]	(B)	[C]	[D] = [A]/[C]	[E] = [B][1,000]/[C]	[F] = [B] x 3.16
	2010	3,440,992,343	2,752,794	7,574,912	0.4543	0.3634	8,671,300
	2011	3,582,037,382	2,865,630	8,511,965	0.4208	0.3367	9,026,733
-	2012	3,575,544,966	2,860,436	8,766,787	0.4079	0.3263	9,010,375
	2013	3,456,980,863	2,765,585	9,686,980	0.3569	0.2855	8,711,592
-	2014	3,251,262,249	2,601,010	9,424,065	0.3450	0.2760	8,193,181
-	2015	3,792,499,121	3,033,999	10,034,051	0.3780	0.3024	9,557,098
-	2016	3,636,640,352	2,909,312	10,822,393	0.3360	0.2688	9,164,334

Source: M-Form submitted by airlines and CAAT calculation using no. of flights (D/A) from airport operators, considering AOC's nationalities

per of NSTDF

https://www.caat.or.th/wp-content/uploads/2018/01/Thailand-Action-Plan-2018.pdf

Objective & Methodology

- Objective
 - ✓ Aims to assess potential of GHG emission reduction in Thai aviation sector
- Methodology
 - ✓ Update global status and trend on aviation GHG emission reduction with COVID-19 impact.
 - ✓ Analyze selected measures critical and suitable to Thailand for GHG emission reduction potential using ICAO CORSIA CO₂ Estimation and Reporting Tool [CERT] to address following mitigation measures through Aviation GHG Emission Reduction Working Group [AGERWG]
 - > Aircraft-related Technology Development such as aircraft minimum fuel efficiency standards
 - \succ Alternative Fuels such as bio jet fuel
 - > Improved Air Traffic Management (ATM) and Infrastructure Use such as efficient ATM planning
 - > More Efficient Operations such as optimized aircraft maintenance
 - Economic / Market-Based Measures such as Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA) and
 - ➢ Regulatory Measures/Other such as transparent carbon reporting.
 - ✓ Conduct roundtable discussion with stakeholders to get feedback for final recommendation.

Contents

• Project Recap

✓ Rationale of the project
✓ Research objective & methodology
✓ Project members | Timeline | Budget

• On-going Results

✓ Reviews from international cases✓ Thailand effort

Japan Case Study [2008]

- Realizing CO₂ emission contribution from aviation sector
- Policy initiatives include
 - ✓ Eco Airport Councils established with published Guideline in July 2005
 - ✓SKY Eco Promotion Council established by Civil Aviation Bureau, Ministry of Land, Infrastructure, Transport and Tourism in July 2008
- Measures include
 - ✓ Introduction of new planes/equipment, increasing efficiency of the operation, enhancement of airport infrastructure, etc.
 - Changing APU (auxiliary power unit) to GPU (ground power unit) for electricity during parking can reduce CO₂ by 0.8 - 4.2%
 - \geq Introduction of air carriers with good fuel economy can reduce CO₂ by 4.2 8.0%
 - \geq Reduction of guided running time can reduce CO₂ by 0.8 3.1%
 - ✓CO₂ emission calculation methodologies established for airport building, vehicles used in airport, air carrier (parking/taxiing/landing-and-taking off)

Japan Current Status [2021]

- Existing CO₂ reduction target in aviation
 - ✓ International flight from CORSIA: fuel efficiency improvement 2% every year and Carbon Neutral Growth after 2020
 - ✓Domestic flight from Paris Agreement: 1.3977 kgCO₂/ton-km [2013] → 1.2835 kgCO₂/ton-km [2030]
- CO₂ reduction scheme for aviation sector in respond to Prime Minister's Pledge to make Japan carbon neutral by 2050
 - \checkmark Promotion of eco airport & increasing sophistication of aviation system
 - ✓Supporting electrification & hydrogen usage for air carrier, promotion of lightweight/high-efficiency engines, technology innovation on alternative fuels
 - \checkmark Promotion of bio jet fuel
 - ✓ Reduction targets for private sector & local govt [26%@2030, 80%@2050] and central govt [40%@2030, 80%@2050]

Japan Current Status [2021]

- Total emission in domestic airport (2018) from
 - ✓ Air carriers: landing/taking off 31%; taxiing 20%; auxiliary power 7%
 - ✓ Airport (vehicles): GSE (Ground Support Equipment) vehicles 1%
 - ✓ Airport: lighting and air conditioning 12%; aviation light 1%
 - ✓ Access to airport: 28%
- Measures include

er of NST

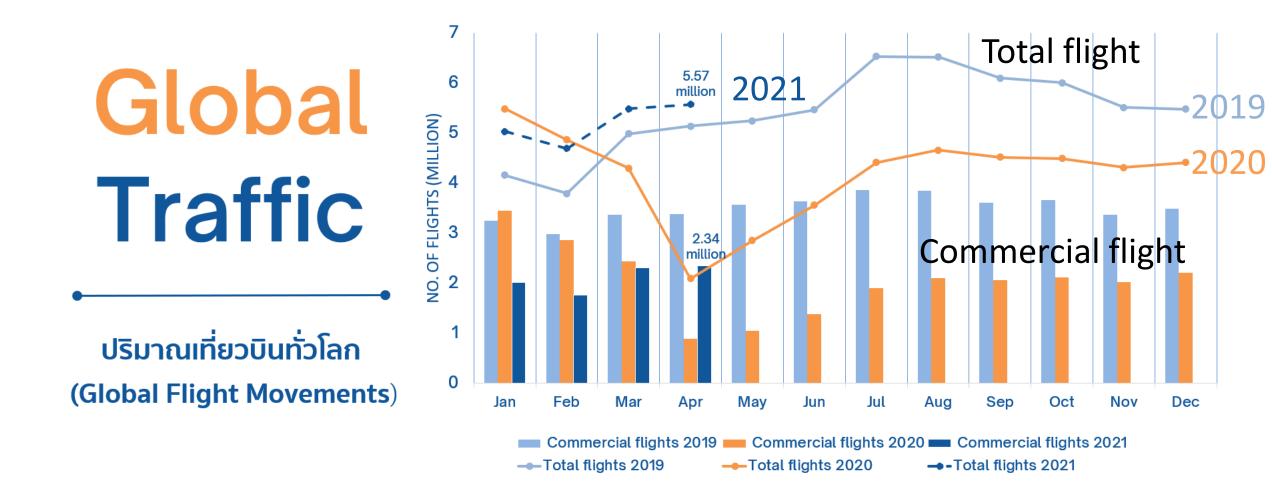
- Eco airport, e.g. hydrant refueling, APU \rightarrow GPU during parking, using LED light
- ✓ New technology, e.g., new air carriers
- ✓ Improvement of aviation management, e.g. optimization of on-land route to reduce taxiing time
- ✓ Usage of sustainable aviation fuel
- ✓ Usage of market mechanism
- Potential of CO₂ reduction through
 - ✓ Solar farm: 15,000 ha in 97 airports: 13 MW → 8 M ton-CO₂/year
 - ✓ APU (auxiliary power unit) to GPU (ground power unit) → 0.39-0.42 M ton-CO₂/year
 - ✓ Changing all GSE vehicles to $EV/FCV \rightarrow 0.03-0.04$ M ton- $CO_2/year$
 - ✓ Changing aviation lighting to LED lighting \rightarrow 0.03 M ton-CO₂/year

Japan Airport [2021]

- Narita int'l airport
 - ✓ Sustainable NRT 2050: net zero emission from NAA* group by 2050 [50% CO₂ emission reduction of Narita Int'l Airport comparing to 2015]
 - Measures: Zero Emission Building (ZEB), changing lighting to LED, zero carbon GSE (Ground Support Equipment) vehicles, carbon zero business trip
- Kansai int'l airport
 - ✓ 40% CO_2 reduction by 2030, zero emission by 2050
 - ✓ Measures: Energy conservation, usage of RE and hydrogen, ZEV, One Eco Airport Plan on KIX, KOBE & ITAMI (promotion of good fuel economy equipment, low-pollution GSE vehicles, promotion of GPU usage, CO₂ reduction of electricity
- Centrair int'l airport
 - ✓ Zero Carbon 2050 Pledge
 - ✓ Measures: introduction of RE, change aviation lighting to LED, introduction of co-generation system, energy conserving equipment, Eco Office
- Haneda int'l airport
 - ✓ CO₂ from facilities (59% from terminals, 22% from airlines) & vehicles (40% from ground handling, 33% from airlines)
 - ✓ Measures: regional air conditioning system, co-generation system, LED lighting, plan for GSE vehicles, CO₂ reduction for parking [APU → GPU], Hydrant refueling system

*NAA = Narita International Airport Corporation

https://www.mlit.go.jp/koku/content/001407733.pdf, https://www.mlit.go.jp/koku/content/001414336.pdf [2021, in Japanese]


Efforts around the world

- ICAO
 - ✓ Doc9988: Guidance on the Development of States' Action Plans on CO₂ Emissions Reduction Activities
- ACI [Airports Council International]
 - ✓ Airport Carbon Accreditation
- FAA (Federal Aviation Administration)
 - ✓ VALE [Voluntary Airport Low Emission Program]
 - ✓ZEV [Zero Emission Vehicle]
 - \checkmark Automation/electrification of gates
- Airports
 - ✓ Frankfurt airport: zero emission by 2050
 - ✓ Dallas/Fort Worth International Airport: zero emission by 2030
 - ✓Heathrow Airport: public transportation share for airport access 50%@2030/ 55%@2040
 - ✓Amsterdam Airport Schiphol: changing taxis into EVs, EV car sharing platform
 - ✓ Stockholm Arlanda Airport: using biogas/ethanol gas in airport shuttle buses, eco taxis
 - ✓ Los Angeles Airport: Landside Access Modernization Program [LAMP]

https://www.mlit.go.jp/common/001390348.pdf (2021, in Japanese)

Note : ข้อมูลปริมาณเที่ยวบินจากเว็บไซต์ Flight Radar 24

* Commercial flights = Commercial passenger flights + cargo flights + charter flights + some business jet flights

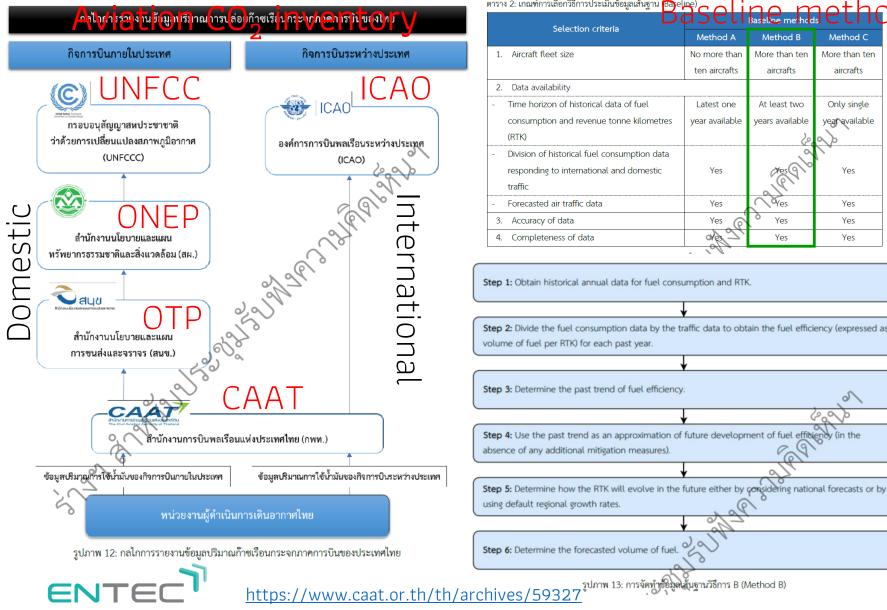
****** Total Flights = Commercial flights above + rest of business jet flights + private flights + gliders + most helicopter flights + most ambulance flights + government flights + some military flights + drones https://www.facebook.com/NTCAD01/posts/370377184708737

Note : 1.ข้อมูลที่แสดงไม่รวม สนามบินอู่ตะเภา สมุย สุโขทัย ตราด เพชรบูรณ์ แม่สะเรียง นครราชสีมา ตาก และปัตตานี

2.ข้อมูลการขนส่งทางอากาศแบบประจำ-ไม่ประจำทั้งภายในประเทศ และระหว่างประเทศรวมกัน (ขาเข้าและขาออก) https://www.facebook.com/NTCAD01/posts/370377184708737

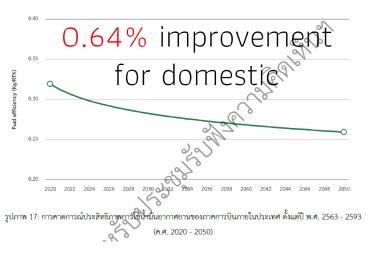
Draft Master/Action Plan on Energy Conservation and Greenhouse Gas Reduction in Aviation Sector [2021-5]

- Concept for international sector [ICAO] & domestic [UNFCCC]
- Establish baseline data on energy consumption and greenhouse gas emissions in the aviation sector of Thailand 2021 – 2025
- Assess potential of energy conservation and greenhouse gas emission reduction in the aviation sector of Thailand
 - ✓MRV* established
 - ✓ Prioritize measures
- Draft Roadmap 2021-2025 with target
- Draft Strategic Action Plan 2021-2025 with organization in charge


*MRV = Measurement, reporting and verification https://www.caat.or.th/th/archives/59327 (ร่าง) แผนแม่บทการอนุรักษ์พลังงานและลดก๊าซเรือนกระจกภาคการบิน ช่วงปี พ.ศ. 2564 - 2568

(ร่าง) แผนปฏิบัติการอนุรักษ์พลังงานและลดก๊าซเรือนกระจกภาคการบิน ช่วงปี พ.ศ. 2564 - 2568

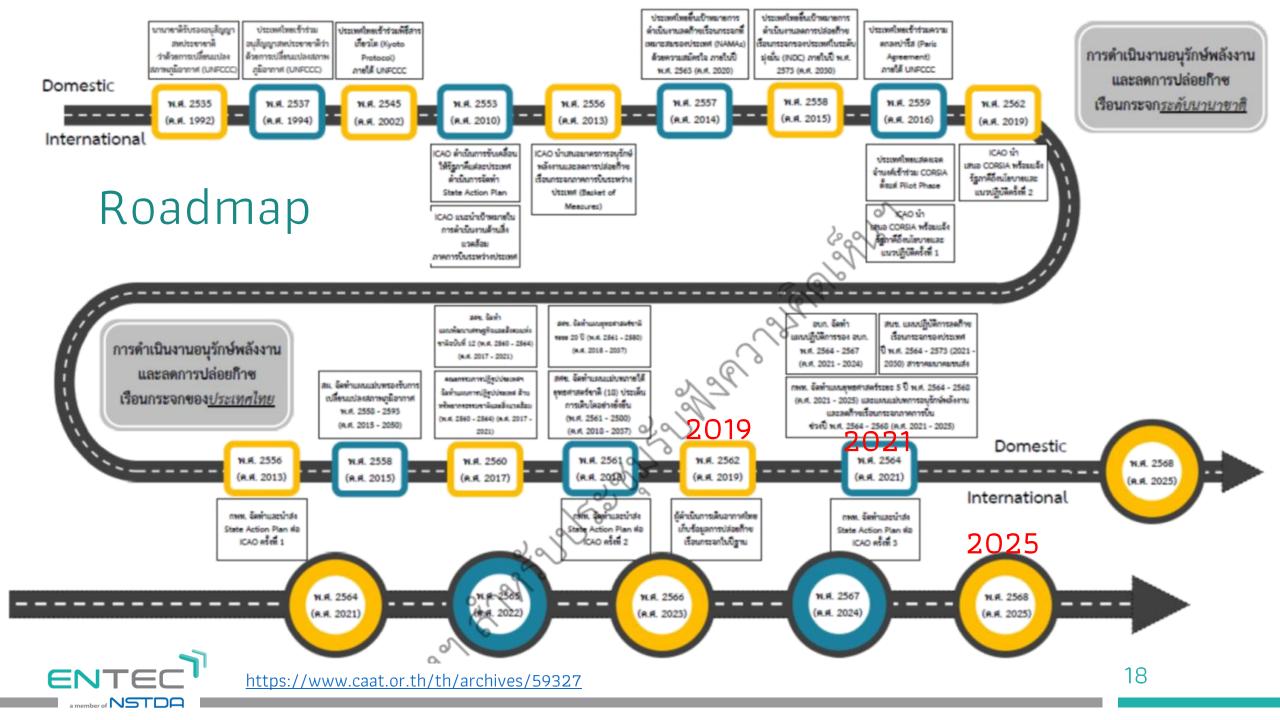
25 พฤษภาคม 2564

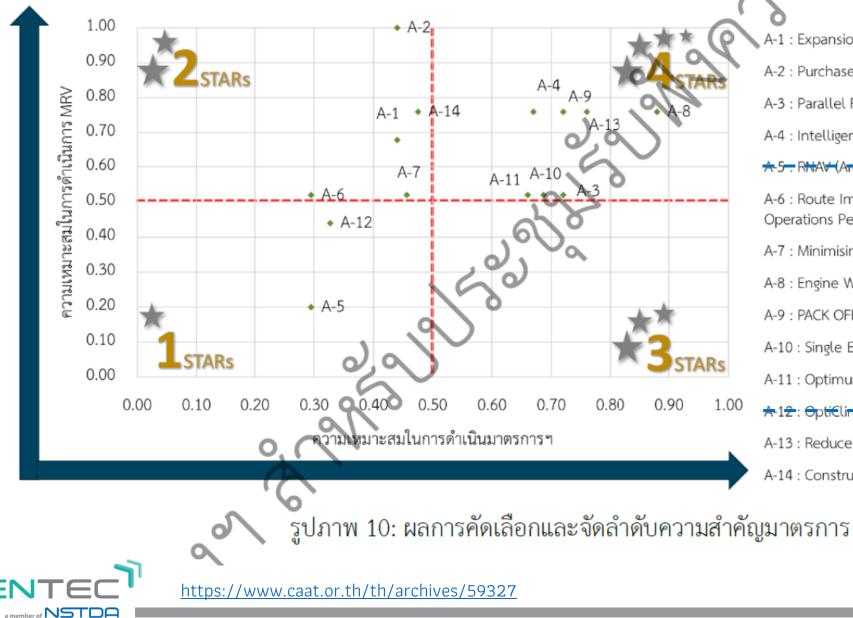

MRV Flow & Methodology

mber of NSTDF

ตาราง 2: เกณฑ์การเลือกวิธีการประเมินข้อมูลเส้นฐาน Baje	aseli		heth		
Selection criteria	Method A	Method B	Method C		
1. Aircraft fleet size	No more than	More than ten	More than ten		
	ten aircrafts	aircrafts	aircrafts		
2. Data availability					
- Time horizon of historical data of fuel	Latest one	At least two	Only single		
consumption and revenue tonne kilometres	year available	years available	year available		
(RTK)		Ze,	ap		
- Division of historical fuel consumption data		2			
responding to international and domestic	Yes	res	Yes		
traffic		61			
- Forecasted air traffic data	Yes	Yes	Yes		
3. Accuracy of data	Yes	ð _{Yes}	Yes		
4. Completeness of data	after 1	Yes	Yes		
			-		
Step 1: Obtain historical annual data for fuel consumption and RTK.					
Step 2: Divide the fuel consumption data by the traffic data to obtain the fuel efficiency (expressed as volume of fuel per RTK) for each past year.					


Fuel Efficiency (kg/RTK)




BAU Projection

nber of NSTD

Prioritize measures [2 & 4 stars]

A-1 : Expansion Aircraft Fleet with New Aircraft

- A-2 : Purchase of New Aircraft to Replace the Old Aircraft
- A-3 : Parallel Route/ Uni-directional Route/ CDR Route
- A-4 : Intelligent Departure Enhancement Program (iDEP)

A-5 RNAV (Area Navigation) Approach

A-6 : Route Improvements by Extended-range Twin-engine **Operations Performance Standards (ETOPS)**

A-7 : Minimising Weight

A-8 : Engine Wash

A-9 : PACK OFF - Take Off Phase

A-10 : Single Engine Taxi

A-11 : Optimum Flap/ Reduce Flap

A-12: OptiClimb Technology

- A-13 : Reduce Reverse / Idle Reverse Thrust
- A-14 : Construction of Runways and/or Taxiways

Potentials of CO₂ Reduction in Thai Aviation Sector @2025

(ค.ศ. 2021 - 2025) รายมาตรการเมื่อเทียบกับเส้นฐาน Domestic			
Measures มาตรการลดก้างเรือนกระจกภาคการบิน	ศักยภาพการลดการใช้น้ำมัน อากาศยาน (ตัน)	ศักยภาพการลดก้าซ เรือนกระจก (ตันคาร์บอนไดออกไซด์)	
มาตรการ Purchase of New Aircraft to Replace the Old Aircraft	4,852.00	15,298.95	
มาตรการ Construction of Runways and/or Taxiways	18,574.13	58,566.49	
มาตรการ PACK OFF - Take Off Phase	96.38	303.90	
มาตรการ Optimum Flap/ Reduce Flap	506.82	1,598.08	
มาตรการ Reduce Reverse / Idle Reverse Thrust	939.05	2,960.95	
มาตรการ Single Engine Taxi	7,092.07	22,362.18	
มาตรการ Minimising Weight	939.21	2,961.44	
มาตรการ Engine Wash	854.70	2,694.98	
ศักยภาพการอนุรักษ์พลังงานและ ลดก้าซเรือนกระจกรวม	33,854.36	0.1 M ton	

ตาราง 21: ศักยภาพการอนุรักษ์พลังงานและลดก๊าซเรือนกระจุก ภาคการบินภายในประเทศปี พ.ศ. 2564 - 2568

ตาราง 23: ศักยภาพการอนุรักษ์พลังงานและลดก้ำซเรือนกระจา ภาคการบินระหว่างประเทศ ปี พ.ศ. 2564 - 2568 (ค.ศ. 2021 - 2025) รายมาตรการเมื่อเทียบกับเส้นฐาน

Measures มาตรการลดก้าซเรือนกระจกภาคการบิม	ศักยภาพการลดการใช้น้ำมัน อากาศยาน (ตัน)	ศักยภาพการลดก๊าซ เรือนกระจก (ตันคาร์บอนไดออกไซด์)
มาตรการ Expansion Aircraft Fleet with New Aircraft	128.56	406.25
มาตรการ Purchase of New Aircraft to Replace the Old Aircraft	4,806.65	15,189.01
มาตรการ Construction of Runways and/or Taxiways	31,034.46	98,068.88
มาตรการ PACK OFF - Take Off Phase	38.17	120.62
มาตรการ Optimum Flap/ Reduce Flap	176.12	556.54
มาตรการ Reduce Reverse / Idle Reverse Thrust	351.18	1,109.73
มาตรการ Single Engine Taxi	2,226.20	7,034.78
มาตรการ Minimising Weight	775.71	2,451.23
มาตรการ Engine Wash	4,329.57	13,681.45
ศักยภาพการอนุรักษ์พลังงานและ ลดก๊าซเรือนกระจกรวม	43,866.62	0.14 M ton

20

Thank you very much

