

สมาคมจิจัจจิทสาการขนส่อแท่ดเอเซีย

ATRANS Research Project A-09/003 Possibility of Ethanol Usage as Diesel Substitute in Thai

Transportation Sector

Nuwong CHOLLACOOP

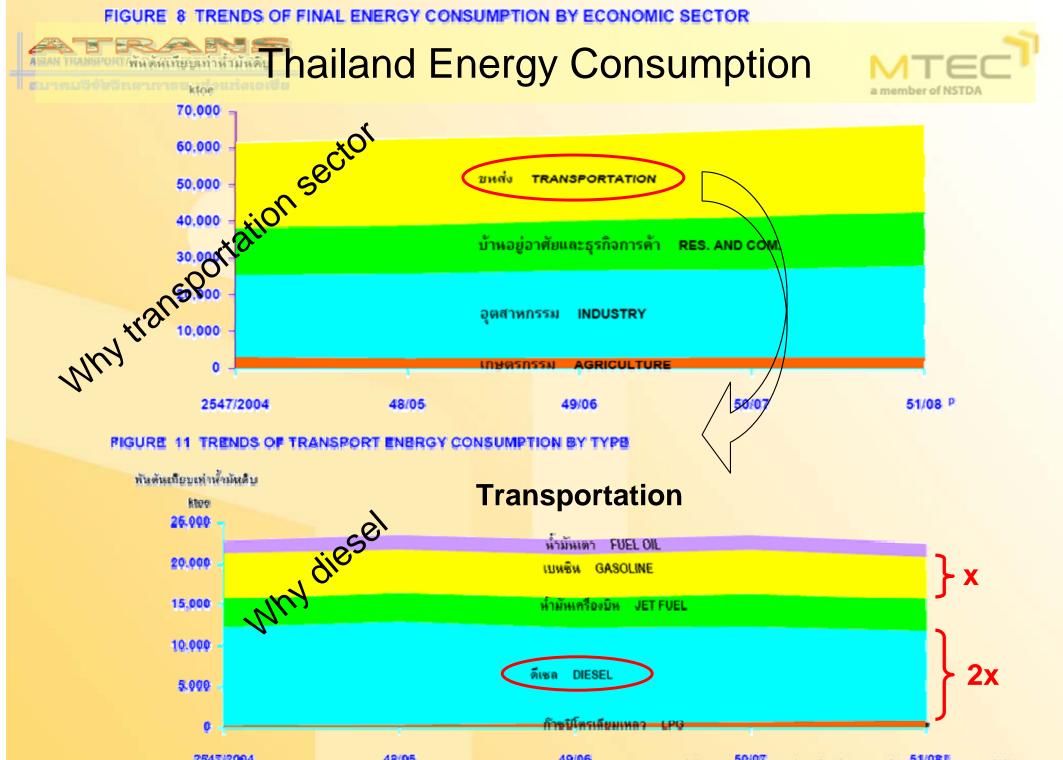
nuwongc@mtec.or.th

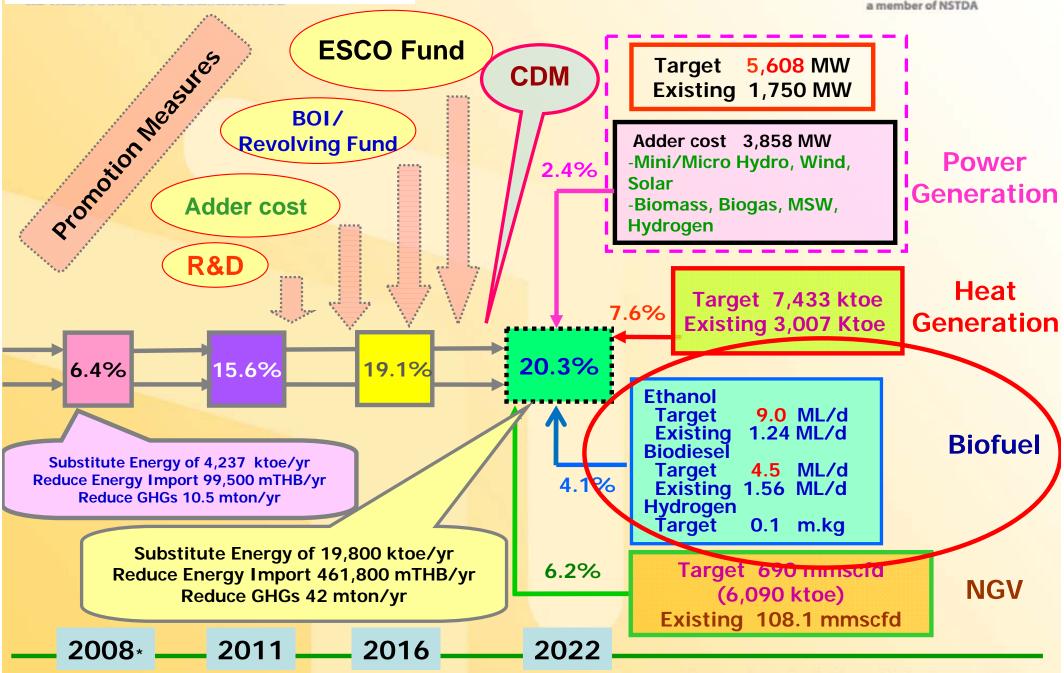
Bioenergy Research Lab National Metal and Materials Technology Center (MTEC)

ATRANS-OTP Round Table Meeting

"Sustainable Transport Development Aspect in Thailand: Transit-Oriented Development (TOD), Equity and the environment"

Friday 4th June 2010

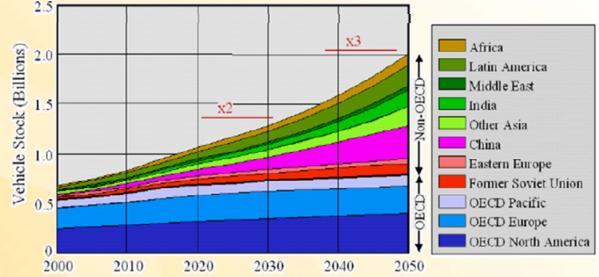

A Driving Force for National Science and Technology Capability

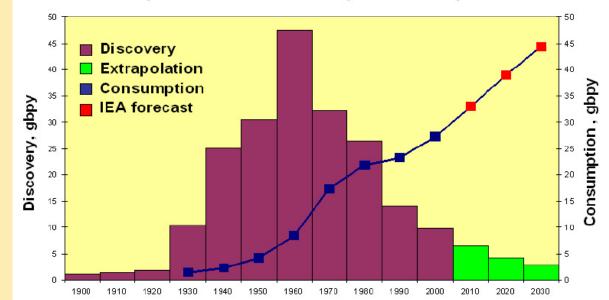

- Brief introduction
 - Rationale & Current situation
 - Objective & Methodology
- Energy demand model construction (BAU)
 - Available record
 - Model assumption
 - Validation by historical record
- Scenario Model
 - Existing technology case for ethanol city bus (BMTA)
 - Assume technology penetration to inter city bus
 - Assume budget spent on developing indigenous technology (on diesel pickup truck etc.)
- Questions & comments?

Source: Department of Alternative Energy Development and Efficiency (DEDE)

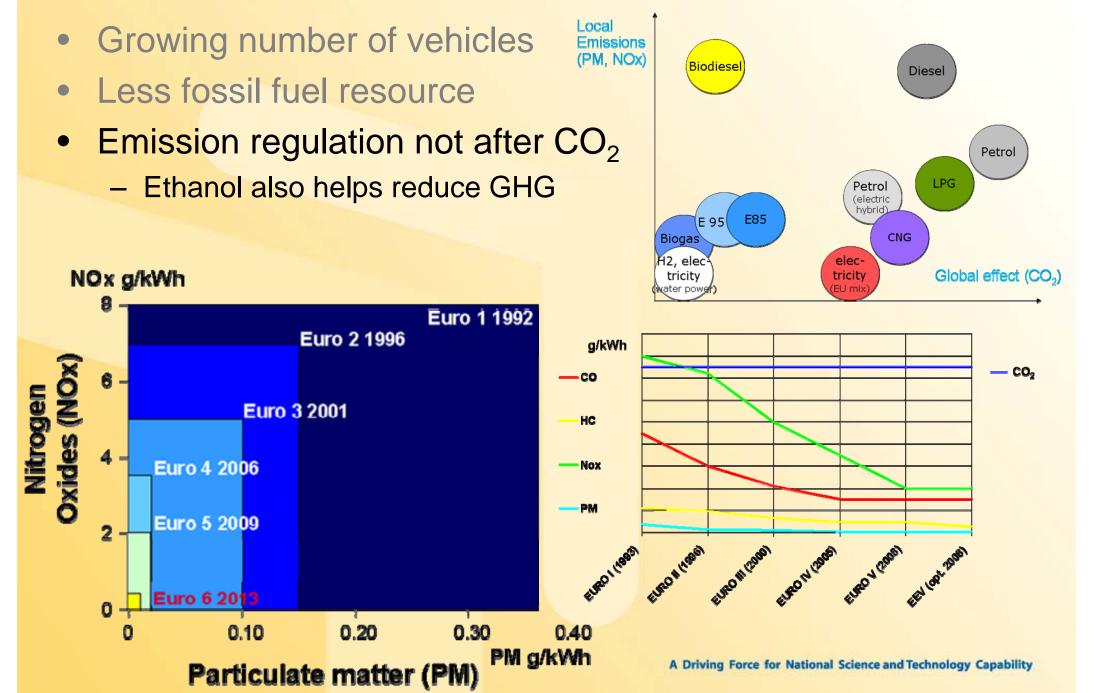
กรมพัฒนาพลังงานทดแทน และอนุรักษ์พลังงาน กระทรวงพลังงาน Development Strategy on Alternative Energy for 2008 - 2022

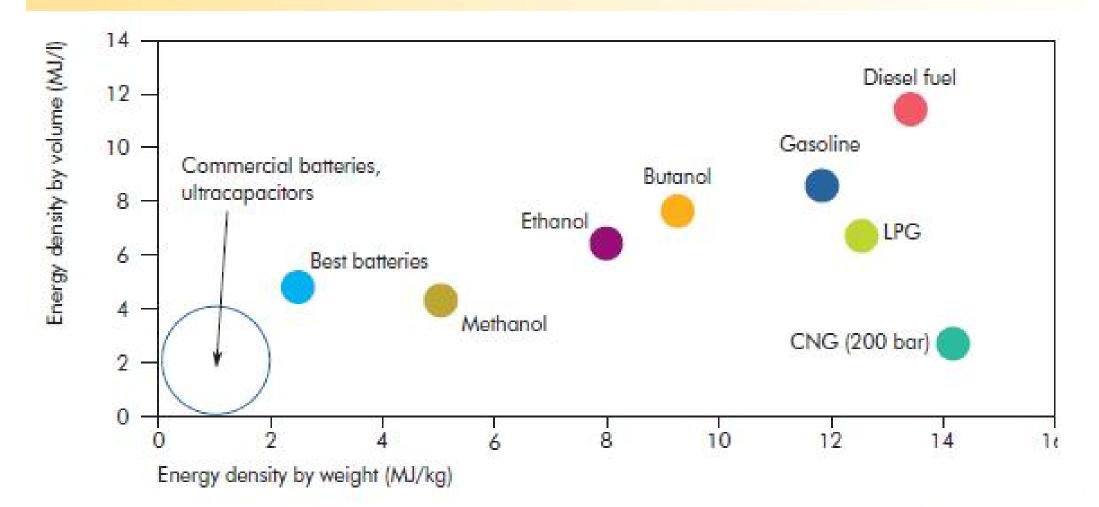
Projected with 2008 average crude oil price of \$94.45/barrel


A Driving Force for Nationa Remarks Techasoof Jani 2009


Scania & Ethanol fuel

- Growing number of vehicles
- Less fossil fuel resource


Comparison between discovery and consumption


Scania & Ethanol fuel

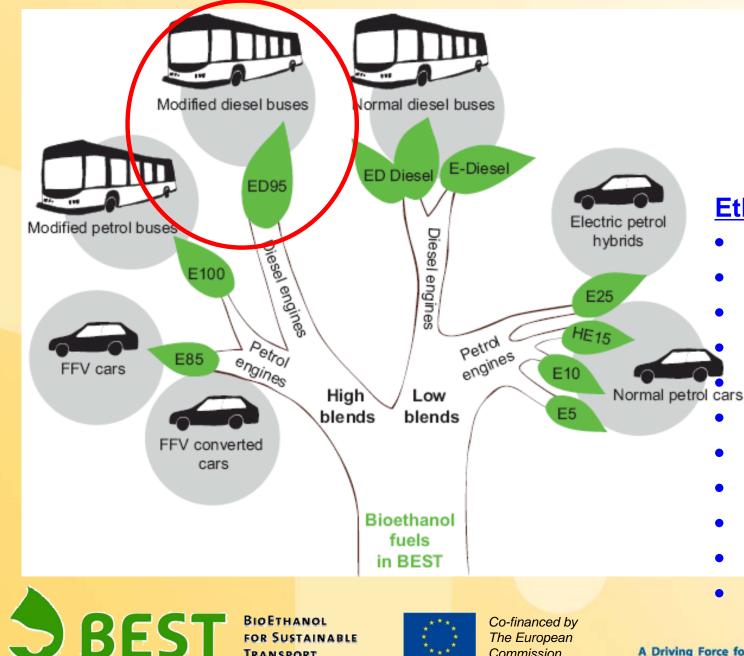
Liquid fuel still hard to beat

Source: Various, including IEA data on the relationship between volumetric and mass density of batteries and IEA assumptions on the efficiencies of engines (25% to 30% for internal combustion engines) and electric motors (90% to 95%).

Source: IEA Energy Technology Perspectives 208

A Driving Force for National Science and Technology Capability

Ethanol Bus Worldwide



Ethanol Bus Worldwide

Commission

Ethanol bus in operation

450 Stockholm, Sweden

- 22 Oslo, Norway
 - 14 Redding, UK 10 Slupk, Polen 5 Madrid
 - 4 Magenta, Italy
- 3 La Spetzia, Italy
- 3 Nottingham, UK
- 2 Nan Yang, China
- 1 Beijing, China
- 1 Sao Paulo, Brazil

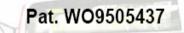
Ethanol Diesel Engine (ED95) & Additive TEC

3rd generation diesel-ethanol engine Highly efficient diesel combustion

9-litre diesel engine 270 hp, 1200 Nm

Euro 5 and EEV Best available environmental standard

Thermal efficiency Ethanol up to 43% (With diesel up to 44%)


Ethanol piston 28:1 Normal piston 17:1

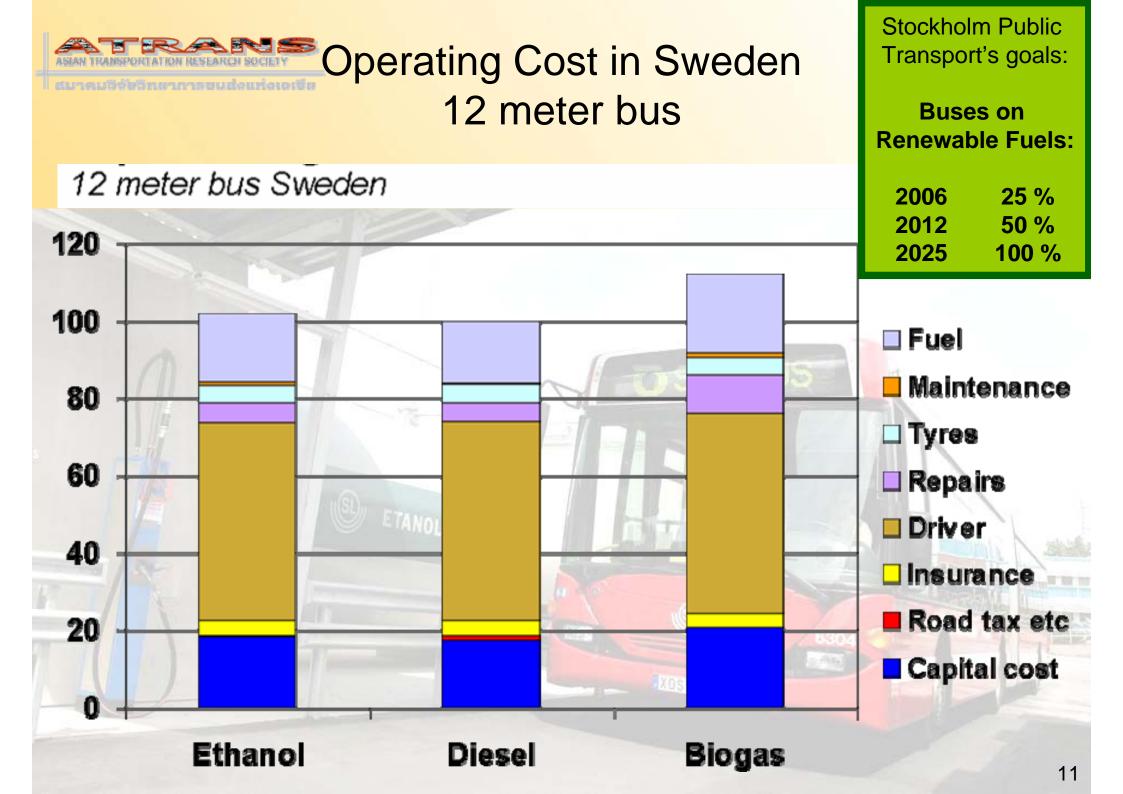
9-litre 270 hp ethanol 9-litre 270 hp diesel Compromise: Cold-start capability vs. max cylinder pressure (power)

🎯 scania

The fuel

SEKAB, EtamaxD™

5% by weight


- Ethanol (95% by volume) 92.2% by weight
- Ignition improver*
- MTBE + isobutyl alcohol 2.8% by weight

Bjorn Westman, Engineering Director, SCANIA

Q_{LHV} = 25.7 MJ/kg (diesel = 44.5 MJ/kg) Density = 0.82kg/litre (=diesel) + a lot of water: 6.4% by weight

*) poly-ethylene-glycol derivative from Akzo Nobel, Beraid 3555

 ED95 – <u>96.5 % hydrous bioethanol</u>, 3.5 % additives – used in bioethanol buses, converted diesel vehicles and dedicated heavy diesel vehicles, such as waste collection trucks.

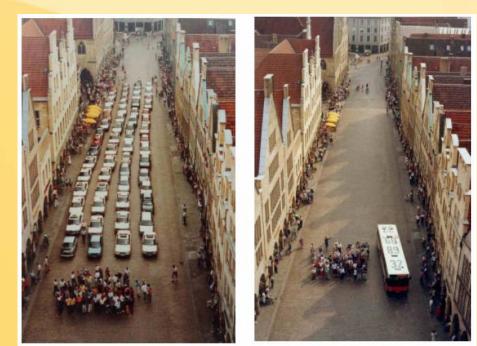
EU Directive 2005/55/EC (28 Sep 2005) TEC

▶<u>M1</u> 1.3. ◀ Ethanol for diesel engines (1)

Description	TT	Limi	Testandad	
Parameter	Unit	Minimum	Maximum	Test method (3)
Alcohol, mass	% m/m	92,4	_	ASTM D 5501
Other alcohol than ethanol contained in total alcohol, mass	% m/m	—	2	ADTM D 5501
Density at 15 °C	kg/m ³	795	815	ASTM D 4052
Ash content	% m/m		0,001	ISO 6245
Flash point	°C	10		ISO 2719
Acidity, calculated as acetic acid	% m/m	—	0,0025	ISO 1388-2
Neutralisation (strong acid) number	KOH mg/l	_	1	
Colour	According to scale		10	ASTM D 1209
Dry residue at 100 °C	mg/kg		15	ISO 759
Water content	% m/m		6,5	ISO 760
Aldehydes calculated as acetic acid	% m/m		0,0025	ISO 1388-4
Sulphur content	mg/kg	—	10	ASTM D 5453
Esters, calculated as ethylacetate	% m/m	—	0,1	ASSTM D 1617

 Cetane improver, as specified by the engine manufacturer, may be added to the ethanol fuel. The maximum allowed amount is 10 % m/m.

(²) The values quoted in the specification are 'true values'. In establishment of their limit values the terms of ISO 4259, Petroleum products — Determination and application of precision data in relation to methods of test, have been applied and in fixing a minimum value, a minimum difference of 2R above zero has been taken into account; in fixing a maximum and minimum value, the minimum difference is 4R (R – reproducibility). Notwithstanding this measure, which is necessary for statistical reasons, the manufacturer of a fuel should nevertheless aim at a zero value where the stipulated maximum value is 2R and at the mean value in the case of quotations of maximum and minimum limits. Should it be necessary to clarify the question as to whether a fuel meets the requirements of the specification, the terms of ISO 4259 should be applied.


(3) Equivalent ISO methods will be adopted when issued for all properties listed above.

Capability

- Aims to assess feasibility of using ethanol in transportation sector (especially as diesel substitute)
 - Construct a database model for energy consumption in transportation
 - Analyze above model for various scenarios to reflect different levels of diesel substitution by ethanol
 - Assess technical-economical feasibility of using ethanol as diesel substitute in transportation sector

Methodology

- Use LEAP to construct energy demand model for transportation sector
- Run scenarios analysis on ED95 technology introduction

การศึกษาผลกระทบนโยบายส่งเสริมการใช้ แก๊สโซฮอล์ E85 ต่อการใช้พลังงานในภาคขนส่ง

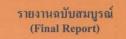
สำนักงานกองทุนสนับสนุนการวิจัย

เสนอโดย

เสนอต่อ

ภาดวิชาวิศวกรรมเครื่องกล คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

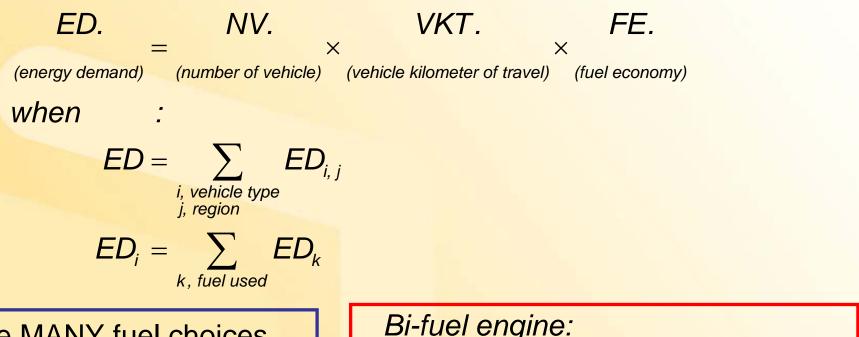
รายงานฉบับสมบรูณ์


การวิจัยเชิงนโยบายเพื่อสนับสนุนการพัฒนาและการใช้ พลังงานหมุนเวียนและการเพิ่มประสิทธิภาพในการใช้ พลังงานในประเทศไทยระยะที่ 2

มิถุนายน 2552

g F

การพัฒนากรอบและแนวทางการจัดทำฐานข้อมูลที่จำเป็นสำหรับการ วางแผนและการติดตามประเมินผลกระทบของทางเลือกการประหยัด พลังงานในภาคขนส่ง



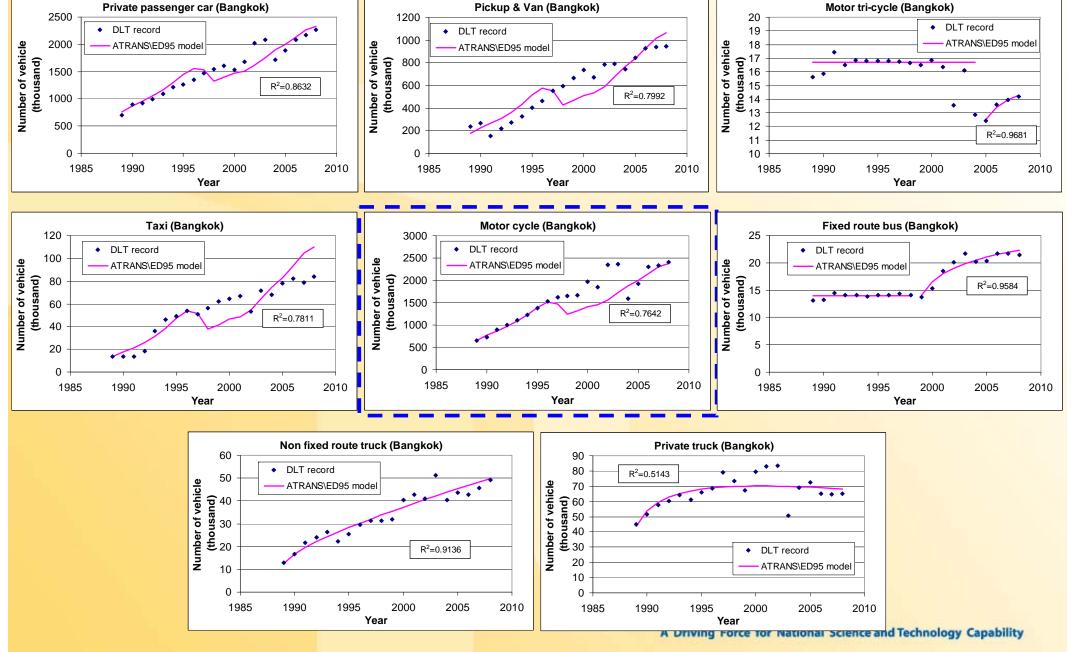
- Brief introduction
 - Rationale & Current situation
 - Objective & Methodology
- Energy demand model construction (BAU)
 - Available record
 - Model assumption
 - Validation by historical record
- Scenario Model
 - Existing technology case for ethanol city bus (BMTA)
 - Assume technology penetration to inter city bus
 - Assume budget spent on developing indigenous technology (on diesel pickup truck etc.)
- Questions & comments?

Basic of energy demand calculation

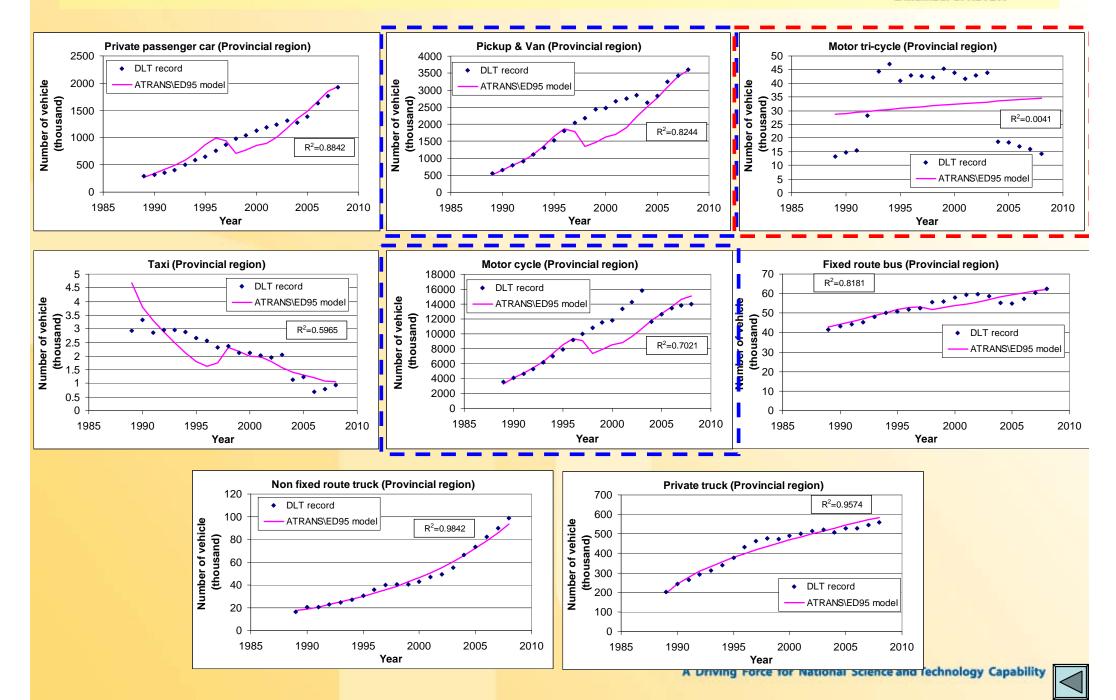
- There are MANY fuel choices and MANY engine technology to calculate fuel consumption
- Issues with Bi- and Dual-fuel
- Need certain assumption in the calculation

Bi-fuel engine: $e.d. = FE_{l} \cdot DS_{l} + FE_{g} \cdot DS_{g}$ Diesel Dual fuel: $e.d. = FE_{DDF.} \cdot (DS_{l} + DS_{g})$ *note DS : Device share by energy unit

สมาคมวิจังวิทยาการขนส่อแท้ดเอเซีย


Vehicle type

A. Total vehicle under motor vehicle act	B. Total vehicle under land transport act			
MV.1 Not more than 7 passengers	PC01	Bus		
MV.2 Microbus & Passenger Van	passenger car	- Fixed Route Bus	BUS01 Fixed route bus	
MV.3 Van & Pick Up	PC02 pickup	- Non Fixed Route Bus	BUS02 Non fixed route bus	
MV.4 Motortricycle		- Private Bus	BUS03 Private bus	
MV.7 Fixed Route Taxi (Subaru)	PC03 motor tri-cycle	Small Rural Bus	sBus04 Small bus	
MV.8 Motortricycle Taxi (Tuk Tuk)		Truck		
MV.6 Urban Taxi	PC04 taxi	- Non Fixed Route Truck	Truck01 Non fixed route truck	
MV.5 Interprovincial Taxi		- Private Truck	Truck02 Private truck	
MV.9 Hotel Taxi	PC05			
MV.10 Tour Taxi	Commercial rent car			
MV.11 Car for Hire				
MV.12 Motorcycle	PC06			
MV.17 Public Motorcycle	Motor cycle			
MV.13 Tractor				
MV.14 Road Roller				
MV.15 Farm Vehicle	-	record from DLT (Dec2009)		
MV.16 Automobile Trailer		http://apps.dlt.go.th/statistics_we	b/statistics.html	

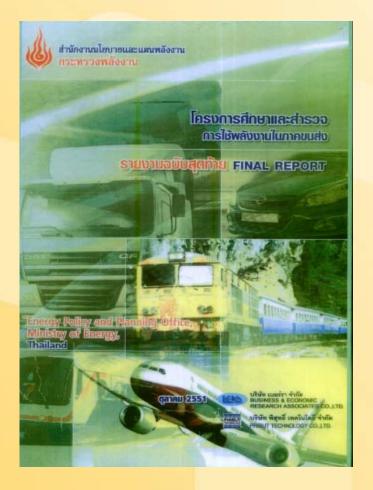

Number of vehicle in Bangkok

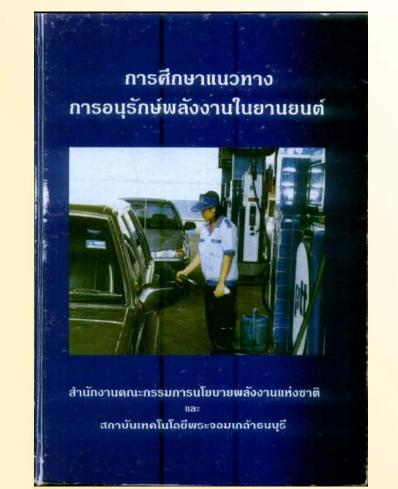
Bangkok MIEC

Number of vehicle in provincial region

a member of NSTDA

Percent share of fuel used in vehicle stocks


	5		Dual-fuel engine Dedicated ga							
	SI Engine		CI Engine Bi-fuel S		Bi-fuel SI	DDF	DDF	LPG	CNG	
	Gasoline	E10	E20	5	LPG	CNG	LPG	CNG	dedic.	dedic
PC01		78.16								
private passenger car	42.86%	56.57%	0.57%	20.38%	1.46%	0.00%	0.00%	0.00%	0.00%	0.00%
PC02		5.25%								
pickup	67.95%	32.05%	0.00%	94.75%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
PC03	4	42.26%								
motor tri-cycle	79.58%	20.42%	0.00%	0.00%	17.84%	0.00%	0.00%	0.00%	37.48%	2.22%
PC04		14.61%								
taxi	42.86%	56.57%	0.57%	0.00%	77.00%	7.62%	0.00%	0.00%	1.37%	0.00%
PC05	69.73%									
commercial rent car	42.86%	56.57%	0.57%	26.92%	3.35%					0.00%
PC06	1	00.00%				JIIIa	- Small amount ~ 0%			
motor cycle	65.57%	34.43%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Bus07		1.24%								
fixed route bus	100.00%	0.00%	0.00%	94.77%	2.39%	0.00%	0.00%	0.00%	0.00%	1.60%
Bus08		0.39								
non fixed route bus	100.00%	0.00%	0.00%	99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Bus09		0.80%								
private bus	100.00%	0.00%	0.00%	99.20%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Truck10		0.00%								
non fixed route truck	100.00%	0.00%	0.00%	99.30%	0.00%	0.00%	0.22%	0.48%	0.00%	0.00%
Truck11		0.39%								
private truck	100.00%	0.00%	0.00%	99.61%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00



าตบชีซีซีซีทหาการขบส่อแห่งเอเซีย

Fuel economy and Vehicle Kilometer of Travel

NEPO & KMUTT, 1997

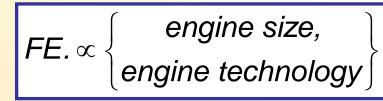
EPPO report, 2008

A Driving Force for National Science and Technology Capability

Fuel economy (BKK)

เมาคมซีจัดซิทยาการขนส่งแท่งเอเซีย

	Single fuel engine			Dual fuel engine				Dedicated engine		
km/litre		SI Engine			Bi-fuel	Bi-fuel	Diesel	Diesel	LPG	CNG
	Gasoline	Gasohol E10	Gasohol E20**	Diesel	SI LPG	SI CNG	DDF LPG	DDF CNG	dedic.	dedic
PC01	10.62*	11.30*	9.85	11.44*					9.87*	10.85*
PC02	10.00*	9.64**	9.28	11.21*					11.57*	11.33*
PC03	10.92**	10.52**	10.13	12.00**					9.71*	9.29*
PC04	10.58**	10.20**	9.82	11.63**	**	**Calculation		n	9.83**	10.81**
PC05	11.83**	11.40**	10.97	13.00**					10.99**	12.08**
PC06	32.77*	29.24*	-	-		meth	nod		-	-
Bus01	2.18**	2.10**	2.03	2.40*	S	hown	next	t 📶	2.03**	1.86*
Bus02	2.09**	2.01**	1.94	2.30**		pages			1.94**	2.13**
Bus03	2.10**	2.02**	1.95	2.31**					1.95**	2.14**
Truck01	2.57**	2.48**	2.38	2.83*					2.39**	2.63**
Truck02	2.22**	2.14**	2.06	2.44**					2.07**	2.27**


*EPPO report, 2008

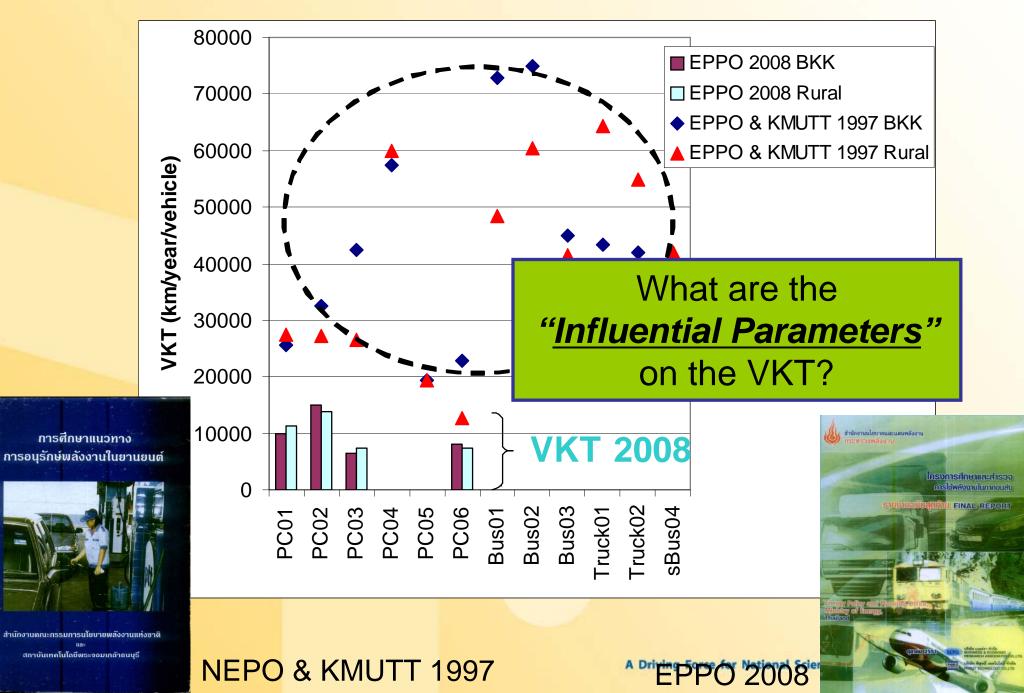
**Estimate in this work by referring to NEPO & KMUTT, 1997

Derivation from 1997 data

- <u>Assumption</u>: The fuel economy is depended only on the vehicle (engine) size and the engine technology.
 - a) So, the <u>FE ratio</u> (SI to SI, or CI to CI) between <u>two vehicle types</u> are constant during the consideration year.

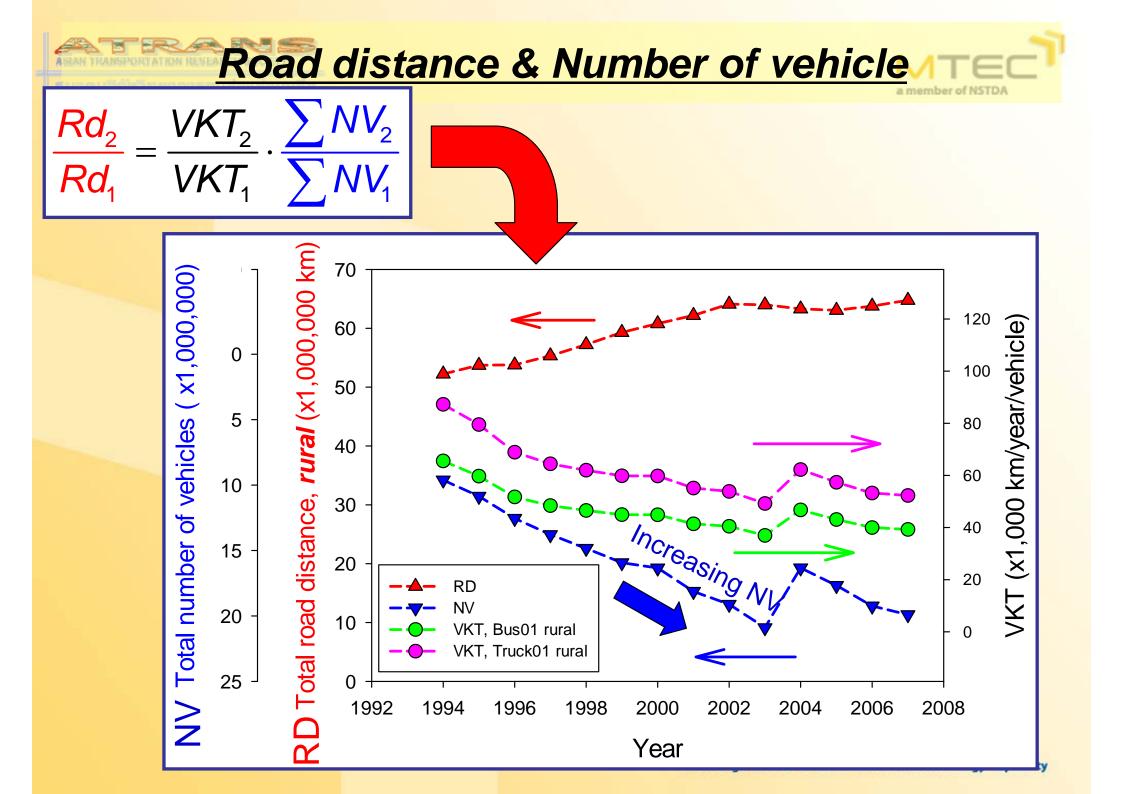
b) And also the <u>FE ratio</u> between two engine technology (SI to CI) of <u>each vehicle type</u> are constant by the same manner.

km/litre				
KIII/IIIIO	Gasoline	Gasohol E10	Gasohol E20**	Diesel
PC01	1	-	-	1.0763
PC02		& KMU ⁻	TT 1997	1.1597
PC03	1.0601	-	-	1.2116
PC04	0.9881	-	-	1.1294
	Gasolin <mark>E</mark>	PO 200	8 Gasohol E20**	Diesel
PC01	10.62*	11.30*	-	11.44*
PC02	10.00*	-	-	11.21*
PC03	-			
PC04	-	-	-	-


yr.1997 => yr.2008							
k Te							
	Gasoline	Gasohol E10	Gasohol E20**	Diesel			
PC01	10.62*	11.30*	9.85	11.44*			
PC02	10.00*	9.64**	9.28	11.21*			
PC03	10.92**	10.52**	10.13	12.00**			
PC04	10.58**	10.20**	9.82	11.63**			
PC05	11.83**	11.40**	10.97	13.00**			

A Driving Force for National Science and Technology Capability

Sehicle Kilometer of Travel


สมาคมวิจัตวิทยาการขนส่อแท่อเอเซีย

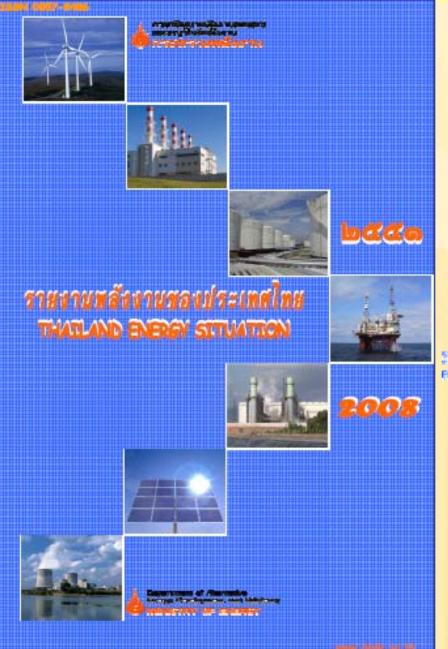
Road distance & Number of vehicle/TEC

of NSTDA

	Veer	Total road Total number of vehicles		r of vehicles	Simplest model to			
	Year	distance (Rural)	l) Bangkok Rural		estimate VKT!!!			
	1996	53,768	3,549,082	12,544,814				
	1997	55,321	3,872,327	13,793,913	over time			
	1998	57,233	4,016,594	14,843,918				
	1999	59,306	4,162,846	15,933,690				
	•		•		$Rd_2 VKT_2 NV_2$			
	•		•		$\overline{Rd_1} = \overline{VKT_1} \cdot \overline{\sum NV_1}$			
:	•		•					
	2004	63,287	4,288,468	16,336,251	km aupply is km domand			
	2005	63,062	4,899,969	17,671,093	km supply ∝ km demand			
	2006	63,773	5,557,111	19,250,186				
	2007	64,745	5,715,078	19,903,369	sum over VKT x NV of each vehicle type			
	Assume road expansion mostly from provincial region (data obtained from Department of Highways)							
	Thailand transport portal (Rural)							
L	http://vigportal.mot.go.th/portal/site/PortalMOT/stat/index6URL/							

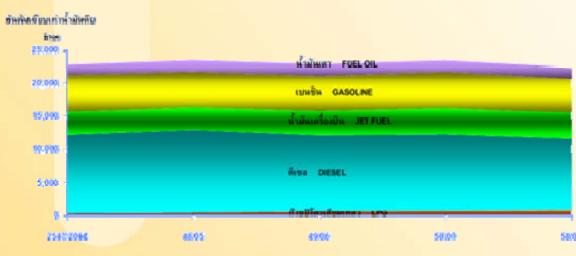
Vehicle Kilometer of Travel

apability


	Bangkok	Province
PC01 passenger car	9,887*	11,264*
PC02 pickup	15,008*	13,746*
PC03 Motor tri-cycle	6,500*	7,475*
PC04 Taxi	39,982**	49,208**
PC05 Commercial rent car	13,407**	15,808**
PC06 Motor cycle	8,097*	7,414*
Bus01 Fixed route bus	50,746**	39,687**
Bus02 Non fixed route bus	52,168**	49,559**
Bus03 Private bus	31,301**	34,018**
sBus04 Small bus	-	34,433**
Truck01 Non fixed route truck	30,211**	52,845**
Truck02 Fixed route truck	29,128**	44,924**

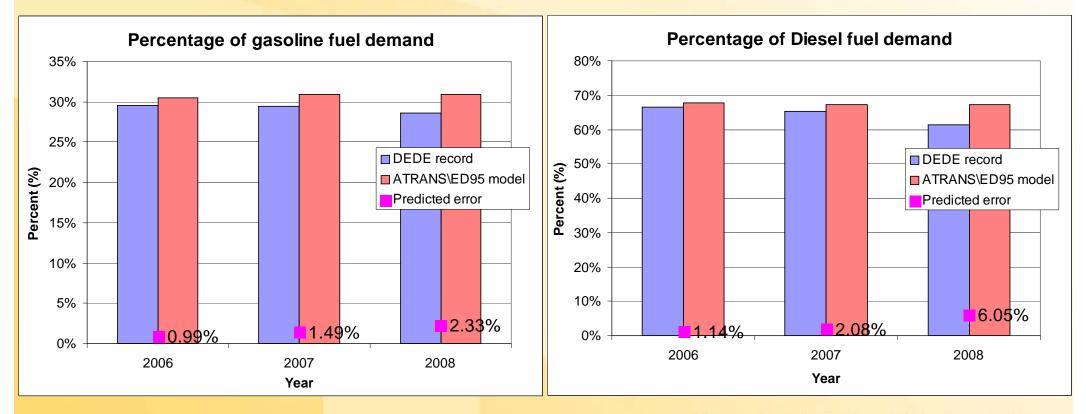
*EPPO report, 2008

**Estimate in this work by referring to NEPO & KMUTT, 1997


Model Validation/Calibration

- DEDE, "Thailand Energy Situation", 2008
- Validation year: 2006
- Calibration years: 2006-2008
- Only gasoline-based, diesel and gas considered (exclude fuel oil & jet fuel)

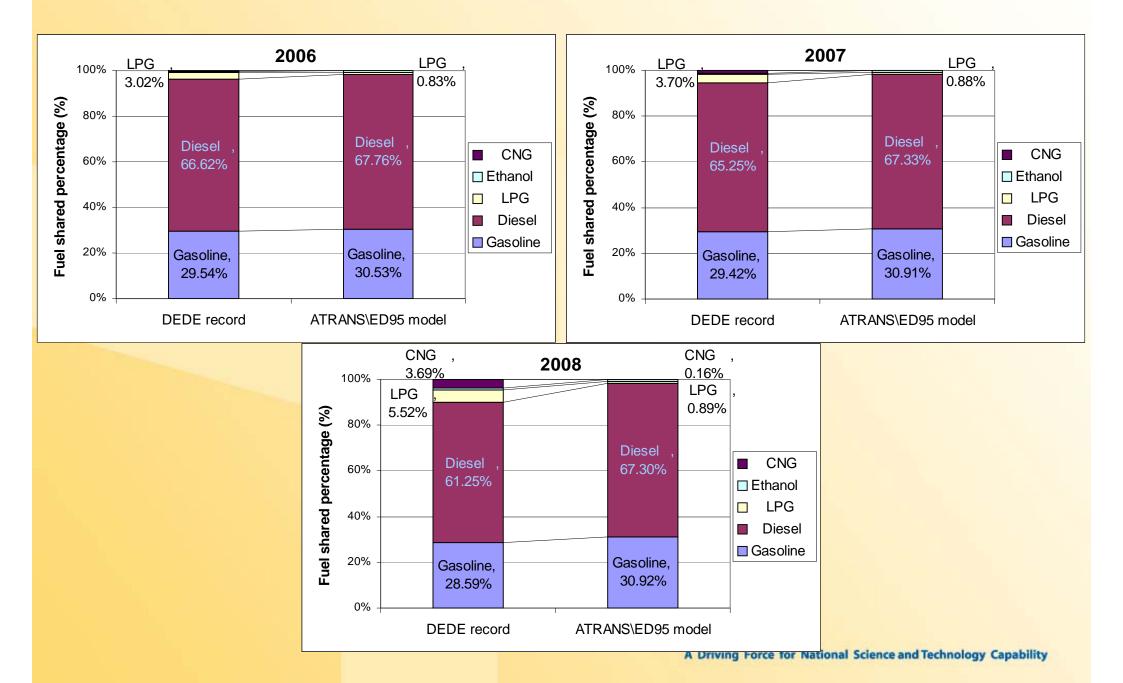
รูป 11 การใช้หลังรานใหลามาการแหล่งจำแหกตรมประเภท FIGURE 11 TRENDS OF TRANSPORT ENERGY CONSUMPTION BY TYPE



http://www.dede.go.th/dede/fileadmin/upload/nov50/nov52/ener1 2551.pdf

Remarks on Model Validation

- Absolute difference may seem large (<10% in base year 2006 while up to 30% in validated year 2008)
- However, percentage difference much smaller
 - Other fuels significantly affecting, e.g. LPG, CNG
 - Fuel sharing assumption



Model Validation in %

สมาคมวิจัดวิทสาการขนส่งแห่งเอเซีส

- Brief introduction
 - Rationale & Current situation
 - Objective & Methodology
- Energy demand model construction (BAU)
 - Available record
 - Model assumption
 - Validation by historical record
- Scenario Model
 - Existing technology case for ethanol city bus (BMTA)
 - Assume technology penetration to inter city bus
 - Assume budget spent on developing indigenous technology (on diesel pickup truck etc.)
- Questions & comments?

Scenarios Model

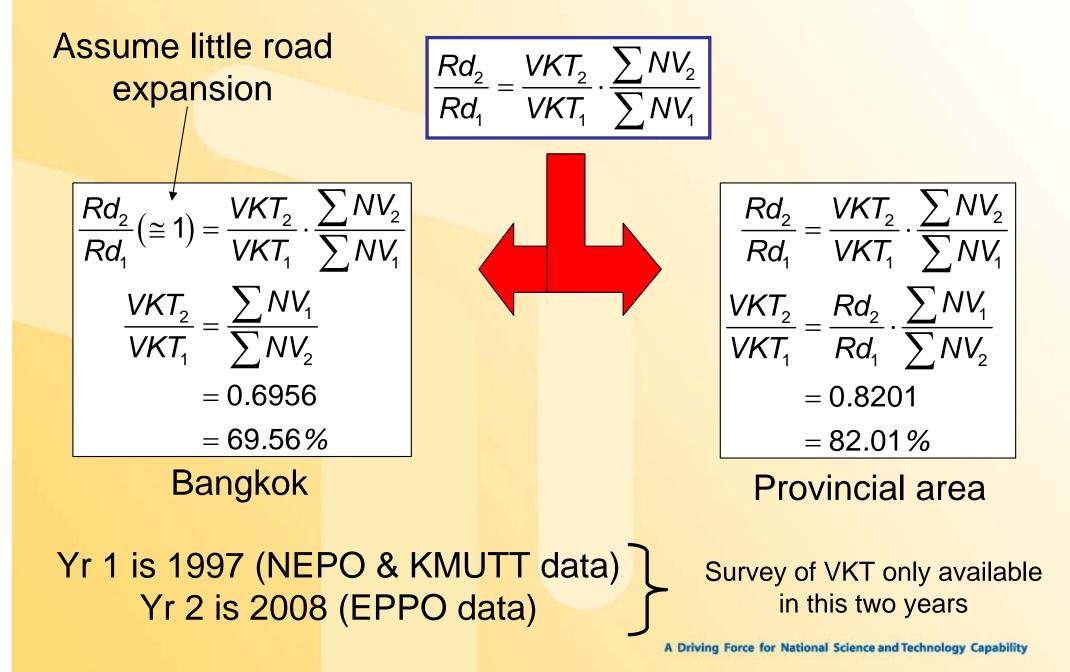
- A. Business As Usual model
 - The ethanol fuel consumption in transportation sector expands only in gasoline fuel for <u>small SI vehicles</u>.
- B. Existing technology case for ethanol city bus (BMTA)
 - The ethanol city bus with Ethanol Diesel (ED95) technology will be introduced up to half of the new <u>Bangkok city bus</u> (only the BMTA) over a period of time.
- C. Future fuel penetration to Inter City Bus
 - The ED95 technology will be expanded to <u>Non fixed route bus and</u> <u>private bus</u> after demonstration with BMTA.
- D. R&D case for funding a development of indigenous technology
 - The indigenous technology will be developed by governmental funding on R&D project for wider expansion of ED95 technology in diesel market.

VKT's influence parameter

 G. Corpuz, M. McCabe, K. Ryszawa, "The Development of Sydney VKT Regression Model", 29th Australasian Transport Research Forum

(square root of the household VKT)

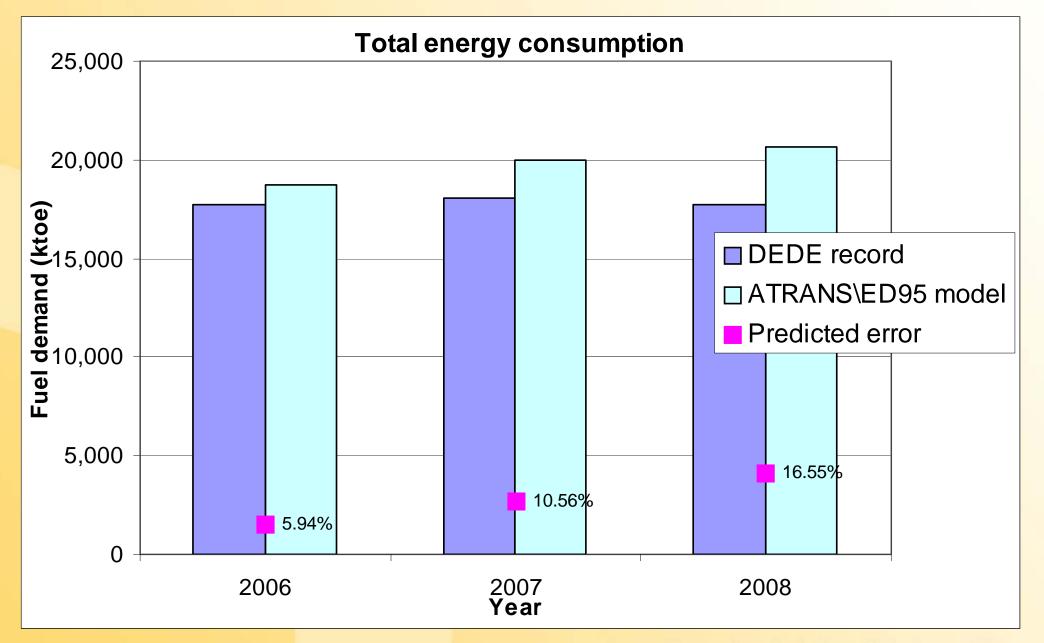
= 3.9270 + (2.4510 * number of vehicles if the household)


(0.0124 * closest distance to major centre or CBD) + (-1.8057 * land use mix) + (-0.0021 * local employment) + (-0.0099 * housing density) + (0.0084 * distance to nearest train, ferry, light rail or high frequency bus)

- 1. Total number of vehicles
- Closet distance to major center => inversely depended on

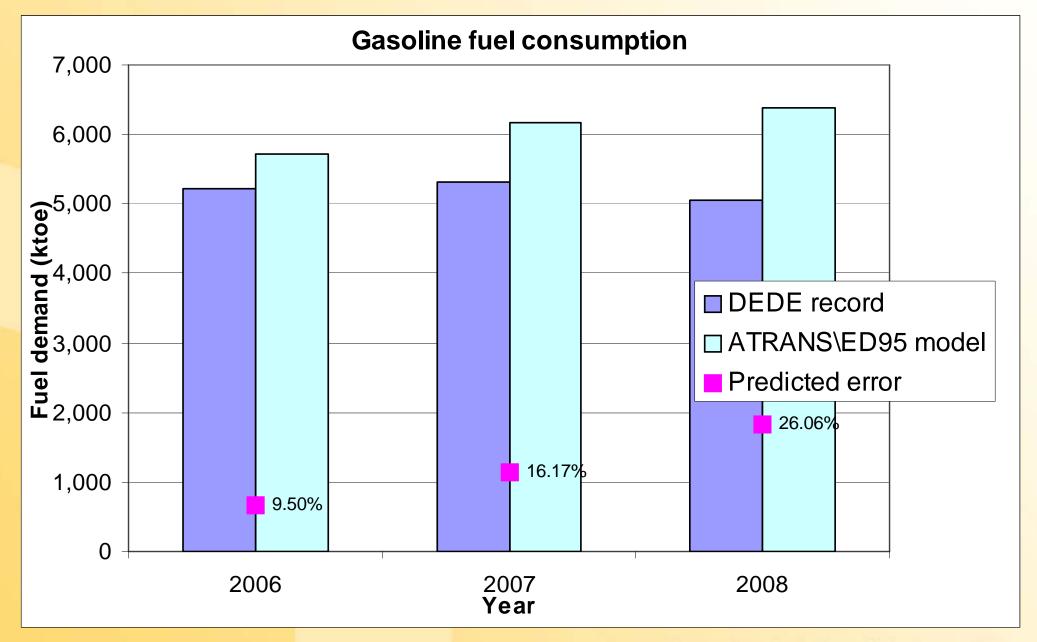
Road distance

Vehicle Kilometer of Travel



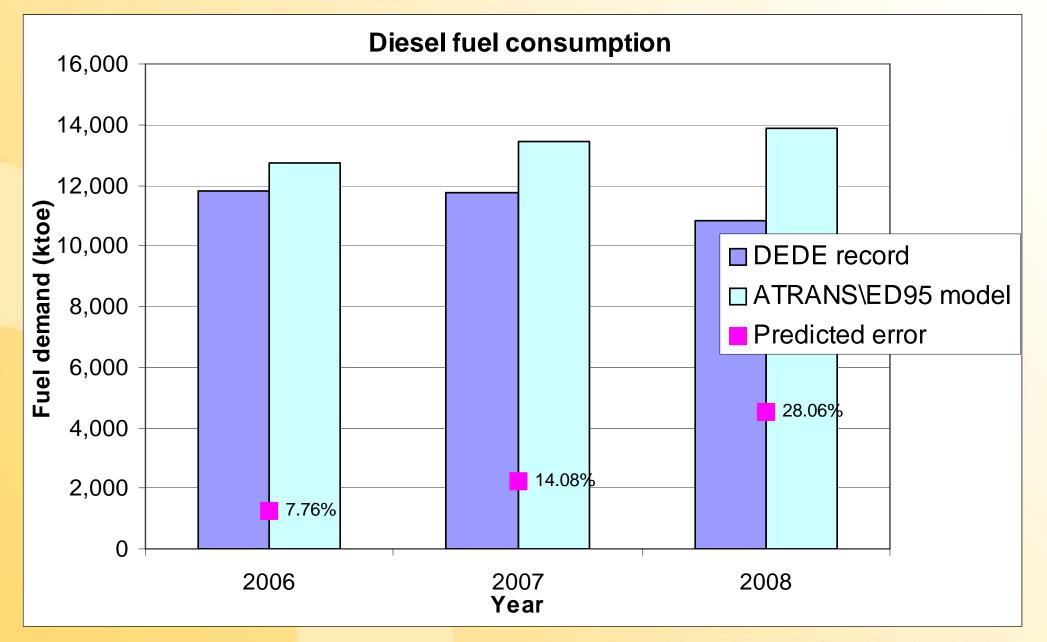
สมาคมอิจัตวิทหาการขนส่งแห่งเอเซีต

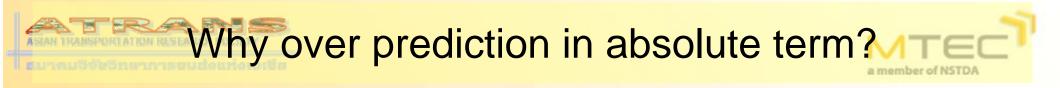
Model Validation


A Driving Force for National Science and Technology Capability

สมาคมอิจัดอิทหาการขนส่งแห่งเอเซ็ต

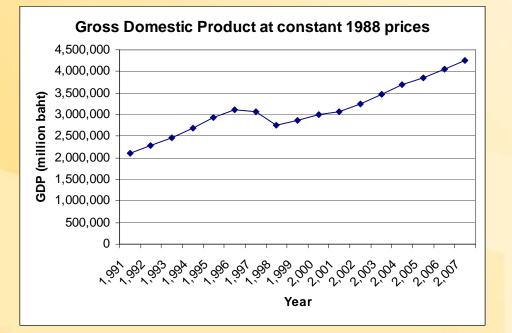
Model Validation

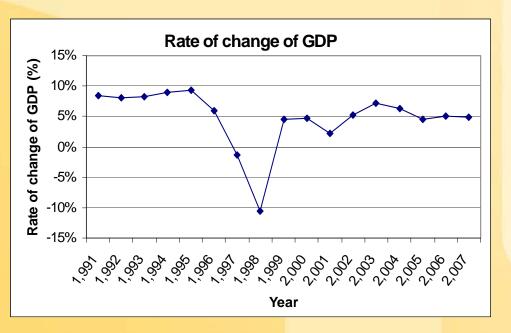

A Driving Force for National Science and Technology Capability

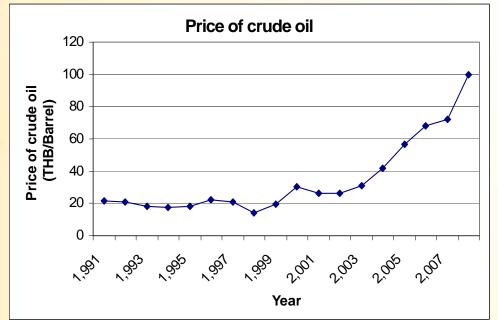

สมาคมซีร์ชีซิทหาการขนส่งแห่งเอเซีย

Model Validation

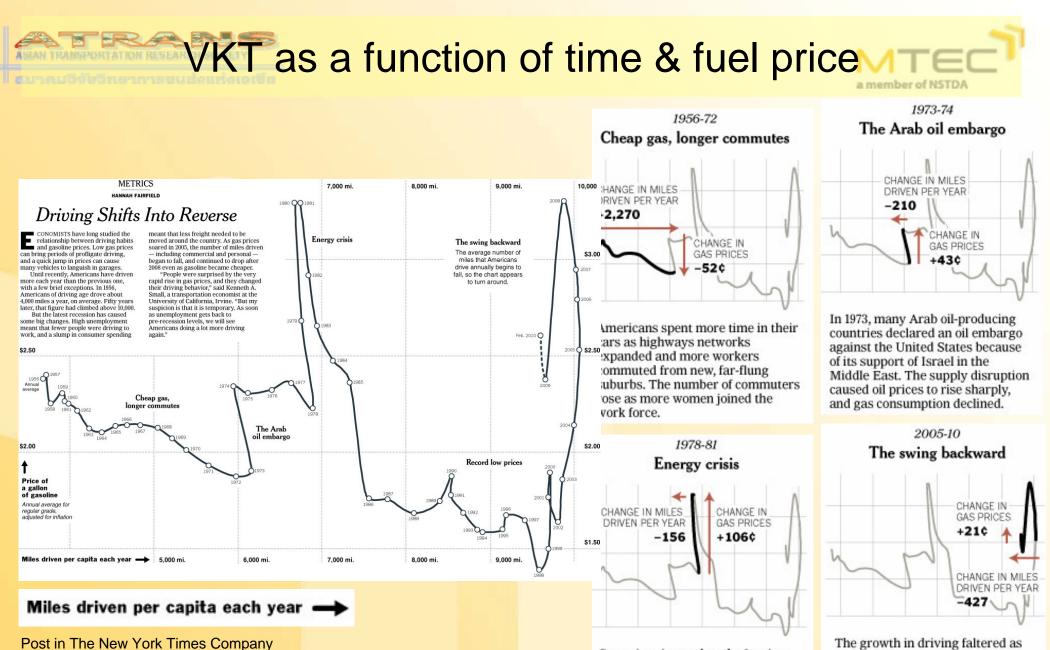
A Driving Force for National Science and Technology Capability


$ED. = NV. \times VKT. \times FE.$


- <u>Gross Domestic Product (GDP</u>): is a complex predicted variable. The estimated value can differ from real value at the considered year. Since NV ∝ f(GDP), GDP could affect ED.
- <u>Vehicle Kilometer of Travel (VKT</u>): Too few historic records of VKT for reference and/or extrapolate. Finding VKT ∞ f(year) is also challenging!
- <u>Fuel share</u>: The driver's fuel chosen is dynamically changing and difficult to be specified in the model.
- <u>Others externalities</u>: economic downturn, crude oil crisis, political crisis, drivers' behavior changing etc.

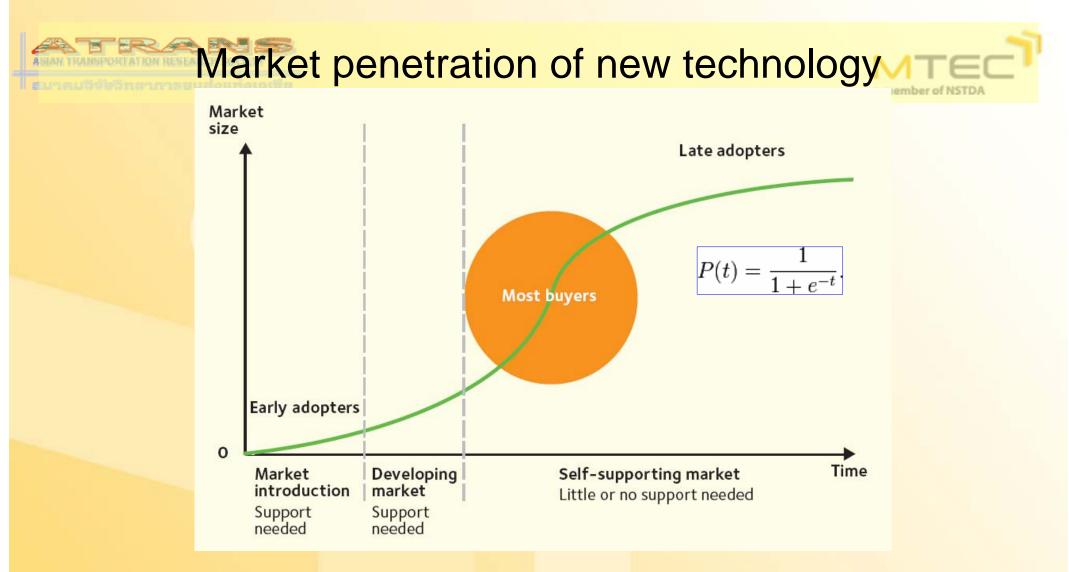


Energy Demand Factors



From wikipedia.org (accessed on 26/03/2010)

- Asian financial crisis (Tom yum kung crisis, July 1997)
- Economic effects from the September 11 attacks (September 11th, 2001)
- Sub-prime mortgage crisis (Hamburger crisis, January 3rd, 2007)
- 2000s energy crisis (2003-2005)
- 2003-2008 world oil market chronology (September 2003)



Energy information Admin.; Federal Highway Admin.; Brookings Inst.

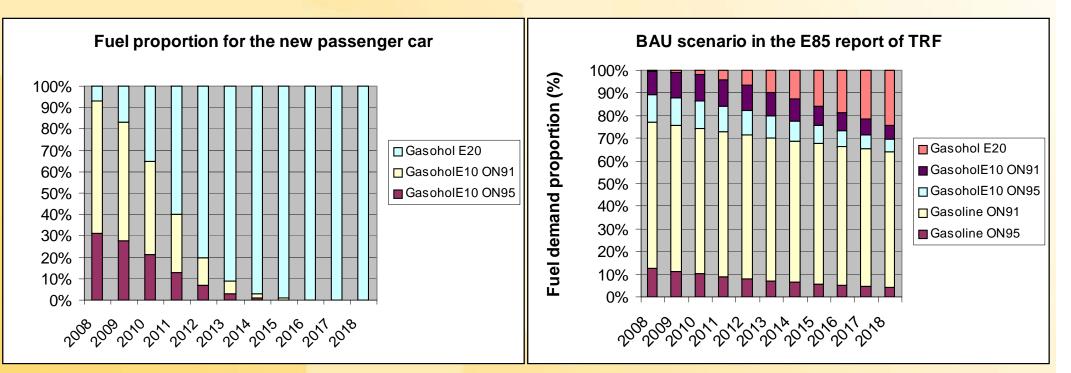
Gas prices jumped as the Iranian revolution and the Iran-Iraq war caused a rift in the global oil supply. United States energy policy turned to conservation, and Congress imposed the first fuel-efficiency standards for cars.

A Driving Force for National S

The growth in driving faltered as gas prices started to climb. But much of the sharp reduction in driving was caused by the long recession and its high unemployment rate. A small but growing number of thrifty and carbonconscious commuters switched to bicycles and public transportation.

- Relationship between time and market penetration of new technology.
 - Market introduction
 - Developing market
 - Self-supported market

BIOETHANOL FOR SUSTAINABLE TRANSPORT



Co-financed by The European Commission

A. Business As Usual model

- Follow the assumption of BAU scenario in the E85 report by JGSEE submitted to TRF (2008).
 - New passenger car after 2008 use: Gasohol_E10 and Gasohol_E20. And the new E20 passenger car proportion growth until 100% in ten years.
 - But motor-cycle and pick-up truck still use the gasoline fuel

B. Ethanol City-bus (BMTA) and C. Inter City Bus

B.Ethanol City-bus (BMTA)

The ethanol city bus with Ethanol Diesel (ED95) technology will be introduced up to half of the new Bangkok City Bus (only for the BMTA sector).

- Applied sector: Fixed Route Bus in the Bangkok metropolitan
- Required technology: Ethanol
 Diesel Technology for city bus
 (Scania)
- Market penetration: Substitute on new BMTA bus up to <u>50: 50</u> for <u>Ethanol Diesel: NGV</u> Citybus

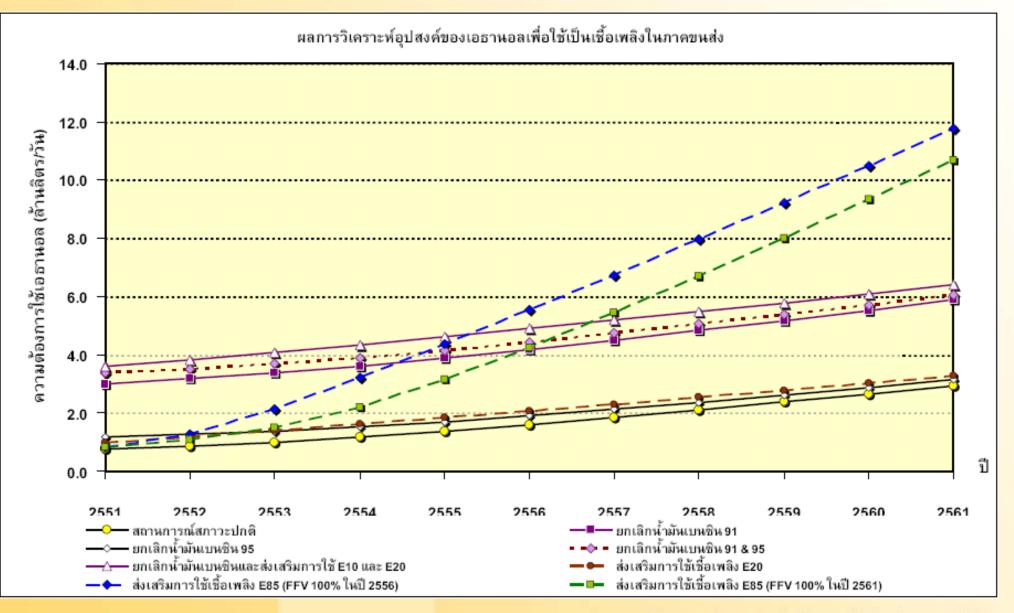
C.Future market penetration to the Inter City bus

The future market penetration to the Inter City Bus (Non fixed route bus and Private bus) for both Bangkok and Provincial Region

- Applied sector: expand from the Ethanol City-bus scenario to the Non fixed route bus and Private bus for both Bangkok and Provincial region
- Required technology: Ethanol
 Diesel Technology (Scania and
 ?)
- Market penetration: Substitute on the <u>Inter City bus</u> as the <u>S-curve</u> of market penetration

D. R&D Case for Funding Research Project ec

- Assume budget spent on developing indigenous technology for utilizing ethanol fuel as diesel substitution for all sectors
 - Applied sector: expand from the ethanol city-bus and Inter-city bus scenarios to the pickup truck for both Bangkok and provincial regions
 - Required technology: the ethanol Diesel technology (ED95) for small vehicle's engine (help from BSR?)
 - Market penetration: Substitute on the <u>pickup truck</u> as the <u>S-curve</u> of market penetration


2011

Proposed Timelines

Tasks	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct
Inception report due (1 Nov)												
I. Data collection												
Identify & obtain necessary data for the model (interview if necessary)												
Project meeting 1												
Progress report presentation (28 Jan)												
II. LEAP model construction										_	_	
Construct & validate LEAP model with BAU												
Project meeting 2												
Interim report submission (30 April)												
III. Scenarios analysis												
Analyze various scenarios to assess economical feasibility/impact of diesel substitution by ethanol												
Assess technical feasibility of ethanol usage in CI engine												
Project meeting 3												
Final presentation (27 Aug)												
IV. Final report												
ATRANS symposium (2-3 Sep)							alulas Form	for Notion	al Science	and Task as		Line
Final report submission (31 Oct)						AU	intering Force	Tor Nation	ar science	and recino	ogy capab	

Ethanol demand in E85 report of TRFVTEC

ED95: ethanol for CI engine

- ED95 = Hydrous ethanol (95% purity) + 5% additive (cetane improver)
- Preliminary test with single cylinder engine at KMUTT (increase compression ratio)

SA According to Regulation (I	3. COMPOSITION/INFORMATION ON INGREDIENTS						
1. IDENTIFICATION THE COMPANY	N OF THE SUBSTANCE/PREPARATION AND OF UNDERTAKING	Substances	CAS No.	EEC No.	Conc. weight-%	Symbol letters; R phrases*	
Identification of the substance preparation:	or ADDITIVE ED95 100	Ethanol 95% Beraid	64-17-5 31694-55-0	200-57-86 500-075-4	20-25 40-50	F; R11	
Use of the substance/preparation:	Additive for ethanol used as motor fuel	(glycerol ethoxylate) Methyl-t-butyl ether	1634-04-4	216-653-1	17-21	F; R11 XI; R38	
Company/undertaking identification:	SEKAB BioFuels & Chemicals AB Box 286 S-891 26 Örnsköldsvik	Isobutanol Morpholin (Promax)	78-83-1 110-91-8	201-148-0 203-815-1	3-5 <0,2	R10 Xi; R37/38 R41 R67 R10 R20/21/22 C; R34	
Contact:	Sweden Mona Lindström,	Lubricant	25307-17-9	246-807-3	7-9	R22 C; R34 N;R50**	
Emergency telephone:	Telephone +46 660 758 00; fax +46 660 571 31 <u>www.sekab.com</u> <u>mona.lindstrom@sekab.com</u> +46 112, ask for the Chemical Emergency in Sweden.	 Classification and R phrases as given in Council Directive 67/548/EEC on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. 					
Date of issue:	Revised: 2009-01-01 Previous issue: 2008-02-26	** Classified by the supplier R phrases are explained under heading 16.					